Skip to main content

Solid-state Fermentation for Food and Feed Application

  • Chapter
Current Developments in Solid-state Fermentation

Abstract

In the last decades, there has been an increasing trend towards the utilization of the solid-state fermentation (SSF) technique to produce several bulk chemicals and enzymes. This methodology has often been found to produce a more stable product, with less energy requirements, in smaller fermenters and smaller volumes of polluting effluents, than submerged fermentation (SmF) systems. SSF is defined as any fermentation process carried out on a solid material in absence of free flowing liquid (Pandey 1992). The low moisture content means that fermentation can only be carried out by a limited number of microorganisms, mainly yeasts and fungi, although some bacteria have also been used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acuña-Arguelles ME, Gutiérrez-Rojas M, Viniegra-González G & Favela-Torres E, 1995, Production and properties of three pectinolytic activities produced by Aspergillus niger in submerged and solid-state fermentation, Applied and Microbiology Biotechnology, 43, 808–814.

    Article  Google Scholar 

  • Adham NZ, 2002, Attempts at improving citric acid fermentation by Aspergillus niger in beet-molasses medium, Bioresource Technology, 84, 97–100.

    Article  CAS  Google Scholar 

  • Adinarayana K, Raju KVV, Zargar MI, Devi RB, Lakshmi PJ & Eillaiah P, 2004, Optimization of process parameters for production of lipase in solid-state fermentation by newly isolated Aspergillus species, Indian Journal of Biotechnology, 3, 65–69.

    CAS  Google Scholar 

  • Aguilar CN & Gutierrez-Sanchez G, 2001a, Review: Sources, properties, applications and potential uses of tannin acyl hydrolase, Food Science and Technology International, 7(5), 373–382.

    Article  CAS  Google Scholar 

  • Aguilar CN, Augur C, Favela-Torres E & Viniegra-González G, 2001b, Induction and repression patterns of fungal tannase in solid-state and submerged cultures, Process Biochemistry, 36, 565–570.

    Article  CAS  Google Scholar 

  • Aguilar CN, Augur C, Favela-Torres E & Viniegra-González G, 2001c, Production of tannase by Aspergillus niger Aa-20 in submerged and solid-state fermentation: Influence of glucose and tannic acid, Journal of Industrial Microbiology and Biotechnology, 26(5), 296–302.

    Article  CAS  Google Scholar 

  • Alberto de Araujo A, Pastore GM & Berger RG, 2002, Production of coconut aroma by fungi cultivation in solid-state fermentation, Applied Biochemistry and Biotechnology, 98–100,747-51.

    Google Scholar 

  • Antier P, Minjares A, Roussos S, Raimbault M & Viniegra-González G, 1993, Pectinasehyperproducing mutants of Aspergillus niger C28B25 for solid-state fermentation of coffee pulp, Enzyme and Microbial Technology, 15, 254–260.

    Article  CAS  Google Scholar 

  • Anto H, Trivedi U & Patel K, 2006, Alpha amylase production by Bacillus cereus MTCC 1305 using solid-state fermentation, Food Technology and Biotechnology, 44, 241–245.

    CAS  Google Scholar 

  • Aoki K, Shinke R & Nishira H, 1976, Chemical composition and molecular weight of yeast tannase, Agricultural and Biological Chemistry, 40, 297–302.

    CAS  Google Scholar 

  • Babu KR & Satyanarayana T, 1995, α-Amylase production by thermophilic Bacillus coagulans in solid state fermentation, Process Biochemistry, 30, 305–309.

    Article  CAS  Google Scholar 

  • Bajpai B & Patil S, 1997, Induction of tannin acyl hydrolase (EC 3.1.1.20) activity in some members of fungi imperfecti, Enzyme and Microbial Technology, 20, 612–614.

    Article  CAS  Google Scholar 

  • Banerjee R, Mukherjee G & Patra KC, 2005, Microbial transformation of tannin-rich substrate to gallic acid through co-culture method, Bioresource Technology, 96, 949–953.

    Article  CAS  Google Scholar 

  • Barthomeuf C, Regerat F & Pourrat H, 1994, Production, purification and characterization of a tannase from Aspergillus niger LCF 8, Journal of Fermentation and Bioengineering, 77(3), 320–323.

    Article  CAS  Google Scholar 

  • Baysal Z, Uyar F & Aytekin C, 2003, Solid state fermentation for production of α-amylase by a thermotolerant Bacillus subtilis from hot-spring water, Process Biochemistry, 38, 1665–1668.

    Article  CAS  Google Scholar 

  • Bedford MR & Classen HL, 1992, Reduction of intestinal viscosity through manipulation of dietary rye and pentosanases concentration is effected through changes in the carbohydrate composition of the intestinal aqueous phase and results in improved growth rate and food conversion efficiency of broiler chicks, Journal of Nutrition, 26, 560–569.

    Google Scholar 

  • Benjamin S & Pandey A, 1996a, Lipase production by Candida rugosa on copra waste extract, Indian Journal of Microbiology, 36, 201–204.

    Google Scholar 

  • Benjamin S & Pandey A, 1996b, Optimization of liquid media for lipase production by Candida rugosa, Bioresource Technology, 55, 167–170.

    Article  CAS  Google Scholar 

  • Benjamin S & Pandey A, 1997b, Enhancement of lipase production during repeated batch cultivation using immobilised Candida rugosa, Process Biochemistry, 32, 437–440.

    Article  CAS  Google Scholar 

  • Benjamin S & Pandey A, 1998, Mixed-solid substrate fermentation. A novel process for enhanced lipase production by Candida rugosa, Acta Biotechnologica, 18, 315–324.

    Article  CAS  Google Scholar 

  • Benjamin S & Pandey, A, 1997a, Coconut cake: a potent substrate for the production of lipase by Candida rugosa in solid state fermentation, Acta Biotechnologica, 17, 241–251.

    Article  CAS  Google Scholar 

  • Benninga H, 1990, A history of lactic acid making, Kluwer Academic Publishers, Boston.

    Google Scholar 

  • Berger RG, 1995, Aroma biotechnology, Springer, Berlin Heidelberg New York.

    Google Scholar 

  • Besson I, Creuly C, Gros JB & Larroche C, 1997, Pyrazine production by Bacillus subtilis in solid state fermentation on soybeans, Applied Microbiology and Biotechnology, 47, 489–495.

    Article  CAS  Google Scholar 

  • Bhusan B, Dosanjih NS, Kumar K & Hoondal GS, 1994, Lipase production from an alkalophilic yeast sp. by solid state fermentation, Biotechnoogy Letters, 16, 841–842.

    Article  Google Scholar 

  • Bindumole VR, Sasikiran K, Balagopalan C & Nambisan B, 2005, Cassava starch factory waste as an alternative substrate for citric acid production by Aspergillus niger MTCC 282, Indian Journal of Microbiology, 45(3), 235–239.

    CAS  Google Scholar 

  • Blandino A, Iqbalsyah T, Pandiella SS, Cantero D & Webb C, 2002, Polygalacturonase production by Aspergillus awamorion wheat in solid-state fermentation, Applied Microbiology and Biotechnology, 58, 164–169.

    Article  CAS  Google Scholar 

  • Boccas F, Roussos S, Gutierrez M, Serrano L & Viniegra GG, 1994, Production of pectinase from coffee pulp in solid state fermentation system: Selection of wild fungal isolate of high potency by a simple three-step screening technique, Journal Food Science Technology, 31, 22–26.

    CAS  Google Scholar 

  • Bogar B, Szakacs G, Linden JC, Pandey A & Tengerdy RP, 2003a, Optimization of phytase production by solid substrate fermentation, Journal of Industrial Microbiology and Biotechnology, 30, 183–189.

    CAS  Google Scholar 

  • Bogar B, Szakacs G, Pandey A, Abdulhameed S, Linden JC & Tengerdy RP, 2003b, Production of phytase by Mucor racemosus in solid-state fermentation, Biotechnology Progress, 19, 312–319.

    Article  CAS  Google Scholar 

  • Bogar B, Szakacs G, Tengerdy RP, Linden JC & Pandey A, 2002, Production of α-amylase with Aspergillus oryzae on spent brewing grain by solid substrate fermentation, Applied Biochemistry and Biotechnology, 102-103, 453–461.

    Article  Google Scholar 

  • Bradoo S, Gupta R & Saxena RK, 1997, Parametric optimization and biochemical regulation of extracellular tannase from Aspergillus japonicus, Process Biochemistry, 32, 135–139.

    Article  CAS  Google Scholar 

  • Bramorski A, Christen P, Ramírez M, Soccol CR & Revah S, 1998, Production of volatile compounds by the edible fungus Rhizopus oryzae during solid-state cultivation on tropical agro-industrial substrates, Biotechnology Letters, 20, 359–362.

    Article  CAS  Google Scholar 

  • Buzzini P, Gobbetti M, Rossi J & Ribaldi M, 1993, Utilizatin of grape must and concentrated rectified grape must to produce gluconic acid by Aspergillus niger in batch fermentations, Biotechnology Letters, 15, 151–156.

    Article  CAS  Google Scholar 

  • Carvalho JC, Soccol CR & Miyaoka MF, 2001, Produção de pigmentos de Monascus em meios à base de bagaço de mandioca, In-Proceedings of the VIIth Encontro Regional Sul de Ciencia e Tecnologia de Alimentos, ABM2-15, Regional Paraná, SBCTA-PR.

    Google Scholar 

  • Carvalho JC, Pandey A, Babitha S & Soccol CR, 2003, Production of Monascus biopigments: an overview, Agro Food Industry Hi-Tech, 14, 37–42.

    CAS  Google Scholar 

  • Carvalho JC, Pandey A, Oishi BO, Brand D, Rodriguez-Léon JA & Soccol CR, 2006, Relation between growth, respirometric analysis and biopigments production from Monascus by solid-state fermentation, Biochemical Engineering Journal, 29, 262–269.

    Google Scholar 

  • Castilho LR, Alves TLM & Medronho RA, 1999, Recovery of pectinolytic enzymes produced by solid state culture of Aspergillus niger, Process Biochemistry, 34, 181–186.

    Article  CAS  Google Scholar 

  • Castilho LR, Alves TLM & Medronho RA, 2000, Production and extraction of pectinases obtained by solid state fermentation of agro-industrial residues with Aspergillus niger, Bioresource Technology, 71, 45–50.

    Article  CAS  Google Scholar 

  • Christen P, Ángeles N, Corzo G, Farres A & Revah S, 1995, Microbial lipase production on a polymeric resin, Biotechnology Techniques, 9, 597–600.

    Article  CAS  Google Scholar 

  • Christen P, Bramorski A, Revah S & Soccol CR, 2000, Characterization of volatile compounds produced by Rhizopus strains grown on agro-industrial solid wastes, Bioresource Technology, 71, 211–215.

    Article  CAS  Google Scholar 

  • Cordova J, Nemmaoui M, Ismaili-Alaoui M, Morin A, Roussos S, Raimbault M & Benjilali B, 1998, Lipase production by solid state fermentation of olive cake and sugar cane bagasse, Journal of Molecular Catalysis B: Enzymatic, 5, 75–78.

    Article  CAS  Google Scholar 

  • Correia RTP, McCue P, Magalhães MMA, Macêdo GR & Shetty K, 2004, Production of phenolic antioxidants by the solid-state bioconversion of pineapple waste mixed with soy flour using Rhizopus oligosporus, Process Biochemistry, 39, 2167–2172.

    Article  CAS  Google Scholar 

  • Cuevas-Rodríguez EO, Milán-Carrillo J, Mora-Escobedo R, Cárdenas-Valenzuela OG & Reyes-Moreno C, 2004, Quality protein maize (Zea mays L.) tempeh flour through solid state fermentation process, Lebensmittel Wissenschaft und Technologie (Food Science and Technology), 37, 59–67.

    Article  CAS  Google Scholar 

  • Cuevas-Rodríguez EO, Verdugo-Montoya NM, Angulo-Bejarano PI, Milán-Carrillo J, Mora-Escobedo R, Bello-Pérez LA, Garzón-Tiznado JA & Reyes-Moreno C, 2006, Nutritional properties of tempeh flour from quality protein maize (Zea mays L.), Lebensmittel Wissenschaft und Technologie (Food Science and Technology), 39, 1072–1079.

    Google Scholar 

  • Deschamps AM, Mahodeau G, Conti M & Lebeault J M, 1980, Bacteria degrading tannic acid and related compounds, Journal of Fermentation Technology, 58, 93–97.

    CAS  Google Scholar 

  • Dhillon SS, Gill RK, Gill SS & Singh M, 2004, Studies on the utilization of citrus peel for pectinase production using fungus Aspergillus niger, International Journal of Environmental Studies, 61, 199–210.

    Article  CAS  Google Scholar 

  • DiLuccio M, Capra F, Ribeiro NP, Vargas GDLP, Freire DMG & De Oliveira D, 2004, Effect of temperature, moisture, and carbon supplementation on lipase production by solid-state fermentation of soy cake by Penicillium simplicissimum, Applied Biochemistry and Biotechnology, 113, 173–180.

    Article  Google Scholar 

  • Díaz-Godínez G, Soriano-Santos J, Augur C & Viniegra-González G, 2001, Exopectinases produced by Aspergillus niger in solid-state and submerged fermentation: a comparative study, Journal of Industrial Microbiology & Biotechnoogy, 26, 271–275.

    Article  Google Scholar 

  • Dominguez A, Costas M, Longo MA & Sanroman A, 2003, A novel application of solid state culture: Production of lipases by Yarrowia lipolytica, Biotechnology Letters, 25, 1225–1229.

    Article  CAS  Google Scholar 

  • El-Batal AI & Abdel Karem H, 2001, Phytase production and phytic acid reduction in rapeseed meal by Aspergillus niger during solid state fermentation, Food Research International, 34, 715–720.

    Article  CAS  Google Scholar 

  • Escamilla-Hurtado ML, Valdes-Martýnez SE, Soriano-Santos J, Gomez-Pliego R, Verde-Calvo JR, Reyes-Dorantes A & Tomasini-Campocosio A, 2005, Effect of culture conditions on production of butter flavor compounds by Pediococcus pentosaceus and Lactobacillus acidophilus in semisolid maize-based cultures, International Journal of Food Microbiology, 105, 305–316.

    Article  CAS  Google Scholar 

  • Falony G, Coca Armas J, Dustet Mendoza JC & Martínez Hernández JL, 2006, Production of extracellular lipase from Aspergillus níger by solid-state fermentation, Food Technology and Biotechnology, 44(2), 235–240.

    CAS  Google Scholar 

  • Feron G, Bonnarame P & Durand A, 1996, Prospects of the microbial production of food flavours, Trends Food Science Technology, 7, 285–293.

    Article  CAS  Google Scholar 

  • Fogarty WM & Ward OP, 1972, Pectic substances and pectinolytic enzymes, Process Biochemistry, 8, 13–17.

    Google Scholar 

  • Fontana RC, Salvador S & da Silveira MM, 2005, Influence of pectin and glucose on growth and polygalacturonase production by Aspergillus niger in solid-state cultivation, Journal of Industrial Microbiology & Biotechnology, 32, 371–377.

    Article  CAS  Google Scholar 

  • Francis F, Sabu A, Nampoothiri KM, Ramachandran S, Ghosh A, Szakacs G & Pandey A, 2003, Use of response surface methodology for optimizing process parameters for the production of α-amylase by Aspergillus oryzae, Biochemical Engineering Journal, 15, 107–115.

    CAS  Google Scholar 

  • Gaitán-Hernández R, Esqueda M, Gutiérrez A, Sñnchez A, Beltrán-Garcia M & Mata G, 2006, Bioconversion of agrowastes by Lentinula edodes: the high potential of viticulture residues, Applied Microbiology Biotechnology, 71, 432–439.

    Article  CAS  Google Scholar 

  • Gangadharan D, Sivaramakrishnan S, Nampoothiri KM & Pandey A, 2006, Solid culturing of Bacillus amyloliquefaciens for alpha amylase production, Food Technology and Biotechnology, 44, 269–274.

    CAS  Google Scholar 

  • Gautam P, Sabu A, Pandey A, Szakacs G & Soccol CR, 2002, Microbial production of extra-cellular phytase using polystyrene as inert solid support, Bioresource Technology, 83, 229–233.

    Article  CAS  Google Scholar 

  • Gombert AK, Pinto AL, Castilho LR & Freire DMG, 1999, Lipase production by Penicillium restrictum in solid-state fermentation using babassu oil cake as substrate, Process Biochemistry, 35, 85–90.

    Article  CAS  Google Scholar 

  • Gross RA & Kalra B, 2002, Biodegradable polymers for the environment, Science, 297, 803–807.

    Article  CAS  Google Scholar 

  • Gutarra MLE, Cavalcanti EDC, Castilho LR, Freire DMG & Sant’ Anna GL, 2005, Lipase production by solid-state fermentation. Cultivation conditions and operation of tray and packed-bed bioreactors, Applied Biochemistry and Biotechnology, 121, 105–116.

    Article  Google Scholar 

  • Gutiérrez-Rozas M, Cordova J, Auria R, Revah S & Favela-Torres E, 1995, Citric acid and polyols production by Aspergillus niger at high glucose concentration in solid state fermentation on inert support, Biotechnology Letters, 17, 219–224.

    Article  Google Scholar 

  • Han J, 2003, Solid-state fermentation of cornmeal with the basidiomycete Hericium erinaceum for degrading starch and upgrading nutritional value, International Journal of Food Microbiology, 80, 61–66.

    Article  CAS  Google Scholar 

  • Han JR, An CH & Yuan JM, 2005, Solid-state fermentation of cornmeal with the basidiomycete Ganoderma lucidum for degrading starch and upgrading nutritional value, Journal of Applied Microbiology, 99, 910–915.

    Article  CAS  Google Scholar 

  • Han YW, Gallagher DJ & Wilfred AG, 1987, Phytase production by Aspergillus ficuum on semisolid substrate, Journal of Industrial Microbiology, 2(4), 195–200.

    Article  CAS  Google Scholar 

  • Hang YD & Woodams EE, 1985, Grape pomace a novel substrate for microbial production of citric acid, Biotechnology Letters, 7, 253–254.

    Article  CAS  Google Scholar 

  • Heck JX, Hertz PF & Ayub MAZ, 2002, Cellulase and xylanase production by isolated amazon Bacillus strains using soybean industrial residue based solid-state cultivation, Brazillian Journal of Microbiology, 33, 215–220.

    Google Scholar 

  • Heck JX, Hertz PF & Ayub MAZ, 2005, Extraction optimization of xylanases obtained by solid-state cultivation of Bacillus circulans BL53, Process Biochemistry, 40, 2891–2895.

    Article  CAS  Google Scholar 

  • Hernaiz MJ & Sinisterra JM, 1999, Modification of purified lipase from Candida rugosa with polyethylene glycol: A systematic study, Enzyme and Microbial Technology, 24, 181–190.

    Article  CAS  Google Scholar 

  • Hsu FL, Wang PM, Lu SY & Wu WT, 2002, A combined solid-state and submerged cultivation integrated with adsorptive product extraction for production of Monascus red pigments, Bioprocess and Biosystems Engineering, 25, 165–168.

    Article  CAS  Google Scholar 

  • Iluyemi FB, Hanafi MM, Radziah O & Kamarudin MS, 2006, Fungal solid state culture of palm kernel cake, Bioresource Technology, 97, 477–482.

    Article  CAS  Google Scholar 

  • Ito K, Yoshida K, Ishikawa T & Kobayashi S, 1990, Volatile compounds produced by fungus Aspergillus oryzae in rice koji and their changes during cultivation, Journal of Fermentation and Bioengineering, 70, 169–172.

    Article  CAS  Google Scholar 

  • Janssens L, de Pooter HL, Vandamme EJ & Schamp NM, 1992, Production of flavours by microorganisms, Process Biochemistry, 27, 195–215.

    Article  CAS  Google Scholar 

  • John RP, Nampoothiri KM & Pandey A, 2006, Solid-state fermentation for L-lactic acid production from agro wastes using Lactobacillus delbrueckii, Process Biochemistry, 41, 759–763.

    Article  CAS  Google Scholar 

  • Joshi VK, Parmar M & Ran NS, 2006, Pectin esterase production from apple pomace in solid-state and submerged fermentations, Food Technology and Biotechnology, 44, 253–256.

    CAS  Google Scholar 

  • Kamini NR, Mala JGS & Puvanakrishnan R, 1998, Lipase production from Aspergillus niger by solid-state fermentation using gingelly oil cake, Process Biochemistry, 33, 505–511.

    Article  CAS  Google Scholar 

  • Kapoor M & Kuhad RC, 2002, Improved polygalacturonase production from Bacillus sp. MG-cp-2 under submerged (SmF) and solid state (SSF) fermentation, Letters in Applied Microbiology, 34, 317–322.

    Article  CAS  Google Scholar 

  • Kar B & Banerjee R, 2000, Biosynthesis of tannin acyl hydrolase from tannin-rich forest residue under different fermentation conditions, Journal of Industrial Microbiology and Biotechnology, 25(1), 29–38.

    Article  CAS  Google Scholar 

  • Kar B, Banerjee R & Bhattacharyya BC, 1999, Microbial production of gallic acid by modified solid state fermentation, Journal of Industrial Microbiology and Biotechnology, 23(3), 173–177.

    Article  CAS  Google Scholar 

  • Kazlauskas R, 1994, Elucidating structure mechanism relationship in lipases, prospects for predicting and engineering catalytic properties, Trends in Biotechnology, 12, 464–472.

    Article  CAS  Google Scholar 

  • Khare SK, Krishana J & Gandhi AP, 1995, Citric acid production from Okara (soy residue) by solid state fermentation, Bioresource Technology, 54, 323–325.

    Article  CAS  Google Scholar 

  • Kim DH, Oh BC, Choi WC, Lee JK & Oh TK, 1999, Enzymatic evaluation of Bacillus amyloliquefaciens phytase as a feed additive, Biotechnology Letters, 21(11), 925–927.

    Article  CAS  Google Scholar 

  • Kokab S, Asghar M, Rehman K, Asad MJ & Adedyo O, 2003, Bioprocessing of banana peel for α-amylase production by Bacillus subtilis, International Journal of Agriculture and Biology, 5, 36–39.

    CAS  Google Scholar 

  • Krishna C & Chandrasekaran M, 1996, Banana waste as substrate for α-amylase production by Bacillus subtilis (CBTK 106) under solid-state fermentation, Applied and Microbiology Biotechnology, 46, 106–111.

    Article  CAS  Google Scholar 

  • Krishna C & Nokes SE, 2001, Predicting vegetative inoculum performance to maximize phytase production in solid-state fermentation using response surface methodology, Journal of Industrial Microbiology and Biotechnology, 26(3), 161–170.

    Article  CAS  Google Scholar 

  • Krishna C, 2005, Solid-State Fermentation Systems-An Overview, Critical Reviews in Biotechnology, 25, 1–30.

    Article  CAS  Google Scholar 

  • Kubicek CP & Röhr M, 1986, Citric acid fermentation, Critical Reviews in Biotechnology, 3, 331–373.

    Article  CAS  Google Scholar 

  • Kumar D, Jain VK, Shanker G & Srivastava A, 2003a, Utilisation of fruits waste for citric acid production by solid state fermentation, Process Biochemistry, 38, 1725–1729.

    Article  CAS  Google Scholar 

  • Kumar D, Jain VK, Shanker G & Srivastava A, 2003b, Citric acid production by solid state fermentation using sugarcane bagasse, Process Biochemistry, 38, 1731–1738.

    Article  CAS  Google Scholar 

  • Kumar RA, Gunasekaran P & Lakshmanan M, 1999, Biodegradation of tannic acid by Citrobacter freundii isolated from a tannery effluent, Journal of Basic Microbiology, 39, 161–168.

    Article  CAS  Google Scholar 

  • Kunamneni A, Permaul K & Singh S, 2005, Amylase production in solid state fermentation by the thermophilic fungus Thermomyces lanuginosus, Journal of Bioscience and Bioengineering, 100, 168–171.

    Article  CAS  Google Scholar 

  • Larroche C, Besson I & Gros JB, 1999, High pyrazine production by Bacillus subtilis in solid substrate fermentation on ground soy-beans, Process Biochemistry, 34, 67–74.

    Article  Google Scholar 

  • Lee Bum-Kyu, Piao Hai Yan & Chung Wook-Jin, 2002, Production of red pigments by Monascus purpureus in solid-state culture, Biotechnology and Bioprocess Engineering, 7(1), 21–25.

    Article  CAS  Google Scholar 

  • Lekha PK & Lonsane BK, 1994, Comparative titres, location and properties of tannin acyl hydrolase produced by Aspergillus niger PKL 104 in solid-state, liquid surface and submerged fermentations, Process Biochemistry, 29(6), 497–503.

    Article  CAS  Google Scholar 

  • Lekha PK & Lonsane BK, 1997, Production and application of tannin acyl hydrolase: State of the art, Advances in Applied Microbiology, 44, 215–260.

    Article  CAS  Google Scholar 

  • Longo MA & Sanromán MA, 2006, Production of food aroma compounds, Food Technology and Biotechnology, 44(3), 335–353.

    CAS  Google Scholar 

  • Lozano P, Manjón F, Romojaro F & Iborra J, 1988, Properties of pectolytic enzymes covalently bound to nylon for apricot juice clarification, Process Biochemistry, 23, 75–78.

    CAS  Google Scholar 

  • Mahadik ND, Puntambekar US, Bastawde KB, Khire JM & Gokhale DV, 2002, Production of acidic lipase by Aspergillus niger in solid state fermentation, Process Biochemistry, 38, 715–721.

    Article  CAS  Google Scholar 

  • Mandviwala TN & Khire JM, 2000, Production of high activity thermostable phytase from thermotolerant Aspergillus niger in solid state fermentation, Journal of Industrial Microbiology & Biotechnology, 24, 237–243.

    Article  CAS  Google Scholar 

  • Martinez C, Ros G, Periago MJ, Lopez G & Ortuño y Rincón J, 1996, Phytic acid in human nutrition, Food Science and Technology International, 2(4), 201–209.

    Article  CAS  Google Scholar 

  • Martins ES, Silva D, Da Silva R & Gomes E, 2002, Solid state production of thermostable pectinases from thermophilic Thermoascus aurantiacus, Process Biochemistry, 37, 949–954.

    Article  CAS  Google Scholar 

  • Mateos Diaz JC, Rodríguez JA, Roussos S, Cordova J, Abousalham A, Carriere F & Baratti J, 2006, Lipase from the thermotolerant fungus Rhizopus homothallicus is more thermostable when produced using solid state fermentation than liquid fermentation procedures, Enzyme and Microbial Technology, 39, 1042–1050.

    Article  CAS  Google Scholar 

  • McCue P & Shetty K, 2003, Role of carbohydrate-cleaving enzymes in phenolic antioxidant mobilization from whole soybean fermented with Rhizopus oligosporus, Food Biotechnology, 17(1), 27–37.

    Article  CAS  Google Scholar 

  • McCue P & Shetty K, 2004, A model for the involvement of lignin degradation enzymes in phenolic antioxidant mobilization from whole soybean during solid-state bioprocessing by Lentinus edodes, Process Biochemistry, 40, 1143–1150.

    Article  CAS  Google Scholar 

  • McCue P & Shetty K, 2005, Phenolic antioxidant mobilization during yogurt production from soymilk using Kefir cultures, Process Biochemistry, 40(5), 1791–1797.

    Article  CAS  Google Scholar 

  • McCue P, Horii A & Shetty K, 2003, Solid-state bioconversion of phenolic antioxidants from defatted soybean powders by Rhizopus oligosporus, role of carbohydrate-cleaving enzymes, Journal of Food Biochemistry, 27(6), 501–14.

    Article  CAS  Google Scholar 

  • McCue P, Horii A & Shetty K, 2004, Mobilization of phenolic antioxidants from defatted soybean powders by Lentinus edodes during solid-state bioprocessing is associated with enhanced production of laccase, Innovative Food Science and Emerging Technologies, 5, 385–392.

    Article  CAS  Google Scholar 

  • Medeiros A, Pandey A, Christen P, Fontoura PSG, Freitas RJS & Soccol CR, 2001, Aroma compounds produced by Kluyveromyces marxianus in solid-state fermentation on packed bed column bioreactor, World Journal Microbiology Biotechnology, 17, 767–771.

    Article  CAS  Google Scholar 

  • Medeiros ABP, Pandey A, Vandenberghe LPS, Pastore GM & Soccol CR, 2006, Production and recovery of aroma compounds produced by solid-state fermentation using different adsorbents, Food Technology and Biotechnology, 44(1), 47–51.

    CAS  Google Scholar 

  • Milagres AMF, Santos E, Piovan T & Roberto IC, 2004, Production of xylanase by Thermoascus aurantiacus from sugar cane bagasse in an aerated growth fermentor, Process Biochemistry, 39, 1387–1391.

    Article  CAS  Google Scholar 

  • Miranda OA, Salgueiro AA, Pimentel MCB, Lima Filho JL, Melo EHM & Duran N, 1999, Lipase production by a Brazilian strain of Penicillium citrinum using an industrial residue, Bioresource Technology, 69, 145–147.

    Article  CAS  Google Scholar 

  • Miura S, Arimura T, Itoda N, Dwiarti L, Feng JB, Bin CH & Okabe M, 2004, Production of L-lactic acid from corncob, Journal of Bioscience and Bioengineering, 97, 153–157.

    CAS  Google Scholar 

  • Mondai KC & Pati BR, 2000, Studies on the extracellular tannase from newly isolated Bacillus licheniformis KBR 6, Journal of Basic Microbiology, 40, 223–232.

    Article  Google Scholar 

  • Morais MH, Ramos AC, Matos N & Santos-Olivera EJ, 2000, Production of shiitake mushroom (Lentinula edodes) on lignocellulosic residues, Food Science and Technology International, 6, 123–128.

    Article  CAS  Google Scholar 

  • Morales P, Martínez-Carrera D & Martínez-Sánchez W, 1991, Cultivo de shiitake sobre diversos substratos en México, Micologia Neotropical Aplicada, 4, 75–81.

    Google Scholar 

  • Mugula JK & Lyimo M, 2000, Evaluation of the nutritional quality and acceptability of sorghum-based tempe as potential weaning foods in Tanzania, International Journal of Food Sciences and Nutrition, 51(4), 269–277.

    Article  CAS  Google Scholar 

  • Mukherjee G & Banerjee R, 2006, Effects of temperature, pH and additives on the activity of tannase produced by a co-culture of Rhizopus oryzae and Aspergillus foetidus, World Journal of Microbiology & Biotechnology, 22, 207–212.

    Article  CAS  Google Scholar 

  • Nagarjun PA, Rao RS, Rajesham S & Rao LV, 2005, Optimization of lactic acid production in SSF by Lactobacillus amylovorus NRRL B-4542 using Taguchi methodology, Journal of Microbiology, 43, 38–43.

    CAS  Google Scholar 

  • Nagy V, Toke ER, Keong LC, Szatzker G, Ibrahim D, Omar IC, Szakacs G & Poppe L, 2006, Kinetic resolutions with novel, highly enantioselective fungal lipases produced by solid state fermentation, Journal of Molecular Catalysis B: Enzymatic, 39, 141–148.

    Article  CAS  Google Scholar 

  • Naveena BJ, Altaf Md, Bhadrayya K & Reddy G, 2004, Production of L(+) lactic acid by Lactobacillus amylophilus GV6 in semi-solid state fermentation using wheat bran, Food Technology and Biotechnology, 42, 147–152.

    CAS  Google Scholar 

  • Naveena BJ, Altaf Md, Bhadrayya K & Reddy G, 2005c, Screening and interaction effects of physical parameters, total N content and buffer on L(+)lactic acid production in SSF by Lactobacillus amylophilus GV6 using Taguchi designs, Journal of Biotechnology, 4, 342–346.

    CAS  Google Scholar 

  • Naveena BJ, Altaf Md, Bhadrayya K, Madhavendra SS & Reddy G, 2005a, Direct fermentation of starch to L(+) lactic acid in SSF by Lactobacillus amylophilus GV6 using wheat bran as support and substrate: medium optimization using RSM, Process Biochemistry, 40, 681–690.

    Article  CAS  Google Scholar 

  • Naveena BJ, Altaf Md, Bhadriah K & Reddy G, 2005b, Selection of medium components by Plackett-Burman design for production of L(+)lactic acid by Lactobacillus amylophilus GV6 in SSF using wheat bran, Bioresource Technology, 96, 485–490.

    Article  CAS  Google Scholar 

  • Naveena BJ, Vishnu C, Altaf Md & Reddy G, 2003, Wheat bran an inexpensive substrate for production of lactic acid in solid-state fermentation by Lactobacillus amylophilus GV6: optimization of fermentation conditions, Journal of Scientific & Industrial Research, 62, 453–456.

    CAS  Google Scholar 

  • Niture SK & Pant A, 2004, Purification and biochemical characterization of polygalacturonase II produced in semi-solid medium by a strain of Fusarium moniliforme, Microbiological Research, 159, 305–314.

    Article  CAS  Google Scholar 

  • Ohnishi K, Yoshida Y & Sekiguchi J, 1994, Lipase production of Aspergillus oryzae, Journal Fermentation and Bioengineering, 77, 490–495.

    Article  CAS  Google Scholar 

  • Ortiz-Vazquez E, Granados-Baeza M & Rivera-Munoz G, 1993, Effect of culture conditions on lipolytic enzyme production by Penicillium candidum in a solid-state fermentation, Biotechnology Advances, 11, 409–416.

    Article  CAS  Google Scholar 

  • Palma MB, Pinto AL, Gombert AK, Seitz KH, Kivatinitz SC, Castilho LR & Freire DMG, 2000, Lipase production by Penicillium restrictum using solid waste of industrial babassu oil production as substrate, Applied Biochemistry and Biotechnology-Part A Enzyme Engineering and Biotechnology, 84-86, 1137–1145.

    CAS  Google Scholar 

  • Pandey A, 1992, Recent process developments in solid-state fermentation, Process Biochemistry, 27, 109–117.

    Article  CAS  Google Scholar 

  • Pandey A, Soccol CR, Nigam P & Soccol VT, Biotechnological potential of agro-industrial residues, I: Sugarcane bagasse, 2000a, Bioresource Technology, 74(1), 69–80.

    Article  CAS  Google Scholar 

  • Pandey A, Soccol CR, Nigam P, Soccol VT, Vandenberghe LPS & Mohan R, Biotechnological potential of agro-industrial residues. II: Cassava bagasse, 2000b, Bioresource Technology, 74(1), 81–87.

    Article  CAS  Google Scholar 

  • Pandey A, Szakacs G, Zoclo CR, Rodríguez-León JA & Zoclo VT, 2001, Production, purification and properties of microbial phytases, Bioresource Technology, 77, 203–214.

    Article  CAS  Google Scholar 

  • Papagianni M, Noke SE & Filer K, 2001, Submerged and solid-state phytase fermentation by Aspergillus niger: Effects of agitation and medium viscosity on phytase production, fungal morphology and inoculum performance, Food Technology and Biotechnology, 39(4), 319–326.

    CAS  Google Scholar 

  • Papagianni M, Nokes SE & Filer K, 2000, Production of phytase by Aspergillus niger in submerged and solid-state fermentation, Process Biochemistry, 35(3-4), 397–402.

    Article  Google Scholar 

  • Partos L, 2005, ADM closes citric acid plant as Chinese competition bites, Food Navigator, (http://www.foodnavigator.com/news/ng.asp?id=62537-adm-citric-acid-acidulant).

  • Pasamontes L, Haiker M, Henríquez Huecas M, Mitchell DB & vanLoon APGM, 1997b, Cloning of the phytases from Emericella nidulans and the thermophilic fungus Talaromyces thermophilus, Biochimica et Biophysica Acta-Gene Structure and Expression, 1353(3), 217–223.

    Article  CAS  Google Scholar 

  • Pasamontes L, Haiker M, Wyss M, Tessier M & vanLoon APGM, 1997a, Gene cloning, purification, and characterization of a heat-stable phytase from the fungus Aspergillus fumigatus, Applied and Environmental Microbiology, 63(5), 1696–1700.

    CAS  Google Scholar 

  • Pastore GM, Park YK & Min DB, 1994, Production of a fruity aroma by Neurospora from beiju, Mycological Research, 98(11), 1300–1302.

    CAS  Google Scholar 

  • Patel HM, Wang R, Chandrashekar O, Pandiella SS & Webb C, 2004, Proliferation of Lactobacillus plantarum in solid-state fermentation of oats, Biotechnology Progress, 20, 110–116.

    Article  CAS  Google Scholar 

  • Patil SR & Dayanand A, 2006, Exploration of regional agrowastes for the production of pectinase by Aspergillus niger, Food Technology and Biotechnology, 44, 289–292.

    CAS  Google Scholar 

  • Pintado J, Lonsane BK, Gaime-Perraud I & Roussos S, 1998, On-line monitoring of citric acid production in solid-state culture by respirometry, Process Biochemistry, 33, 513–518.

    Article  CAS  Google Scholar 

  • Pire DG, Wright JE & Albertó E, 2001, Cultivation on shiitake using sawdust from widely available local woods in Argentine, Micologia Aplicada International, 13, 87–91.

    Google Scholar 

  • Prado FC, Vandenberghe LPS, Lisboa C, Paca J, Pandey A & Soccol CR, 2004, Relation between citric acid production and respiration rate of Aspergillus niger in solid-state fermentation, Engineering in Life Science, 4, 179–186.

    Article  CAS  Google Scholar 

  • Prado FC, Vandenberghe LPS, Woidechowski AL, Rodrigues-Leon JA & Soccol CR, 2005, Citric acid production by solid-state fermentation on a semi-pilot scale using different percentages of treated cassava bagasse, Brazilian Journal of Chemical Engineering, 22(4), 547–555.

    Article  CAS  Google Scholar 

  • Ragunathan R & Swaminathan K, 2005, Growth and amylase production by Aspergillus oryzae during solid state fermentation using banana waste as substrate, Journal of Environmental Biology, 26, 653–656.

    CAS  Google Scholar 

  • Rahardjo YSP, Weber FJ, Haemers S, Tramper J & Rinzema A, 2005, Aerial mycelia of Aspergillus oryzae accelerate α-amylase production in a model solid-state fermentation system, Enzyme and Microbial Technology, 36, 900–902

    Article  CAS  Google Scholar 

  • Ramachandran S, Fontanille P, Pandey A & Larroche C, 2006, Gluconic acid: properties, applications and microbial production, Food Technology and Biotechnology, 44, 185–195.

    CAS  Google Scholar 

  • Ramachandran S, Patel AK, Nampoothiri KM, Chandran S, Szakaes G, Soccol CR & Pandey A, 2004, Alpha amylase from a fungal culture grown on oil cakes and its properties, Brazilian Archives of Biology and Technology, 47, 309–317.

    Article  CAS  Google Scholar 

  • Ramachandran S, Roopesh K, Nampoothiri KM, Szakacs G & Pandey A, 2005, Mixed substrate fermentation for the production of phytase by Rhizopus spp. using oilcakes as substrates, Process Biochemistry, 40, 1749–1754.

    Article  CAS  Google Scholar 

  • Ramírez-Coronel MA, Viniegra-González G, Darvill A & Augur C, 2003, A novel tannase from Aspergillus niger with b-glucosidase activity, Microbiology, 149, 2941–2946.

    Article  CAS  Google Scholar 

  • Rao PV, Jayaraman K & Lakshmanan CM, 1993a, Production of lipase by Candida rugosa in solid-state fermentation. 1: Determination of significant process variables, Process Biochemistry, 28, 385–389.

    Article  CAS  Google Scholar 

  • Rao PV, Jayaraman K & Lakshmanan CM, 1993b, Production of lipase by Candida rugosa in solid state fermentation. 2: Medium optimization and effect of aeration, Process Biochemistry, 28, 391–395.

    Article  CAS  Google Scholar 

  • Reyes-Moreno C, Cuevas-Rodríguez EO, Milán-Carrillo J & OG Cárdenas-Valenzuela & Barrón-Hoyos J, 2004, Solid state fermentation process for producing chickpea (Cicer arietinum L) tempeh flour. Physicochemical and nutritional characteristics of the product, Journal of the Science of Food and Agriculture, 84, 271–278.

    Article  CAS  Google Scholar 

  • Richter K & Träger A, 1994, L(+) lactic acid from sweet sorghum by submerged and solid-state fermentations, Acta Biotechnologica, 14, 367–378.

    Article  CAS  Google Scholar 

  • Rivera-Muñoz G, Tinoco-Valencia JR, Sanchez S & Farres A, 1991, Production of microbial lipases in a solid-state fermentation system, Biotechnology Letters, 13, 277–280.

    Article  Google Scholar 

  • Rodríguez E, Mullaney EJ & Lei XG, 2000, Expression of the Aspergillus fumigatus phytase gene in Pichia pastoris and characterization of the recombinant enzyme, Biochemical and Biophysical Research Communications, 268(2), 373–378.

    Article  CAS  Google Scholar 

  • Rojan PJ, Nampoothiri KM, Nair AS & Pandey A, 2005, L(+)-lactic acid production using Lactobacillus casei in solid-state fermentation, Biotechnology Letters, 27, 1685–1688.

    Article  CAS  Google Scholar 

  • Romero-Gómez S, Augur C & Viniegra-González G, 2000, Invertase production by Aspergillus niger in submerged and solid state fermentation, Biotechnology Letters, 22, 1255–1258.

    Article  Google Scholar 

  • Roopesh K, Ramachandran S, Nampoothiri KM, Szakaes G & Pandey A, 2006, Comparison of phytase production on wheat bran and oilcakes in solid-state fermentation by Mucor racemosus, Bioresource Technology, 97, 506–511.

    Article  CAS  Google Scholar 

  • Roukas T, 2000, Citric and gluconic acid production from fig by Aspergillus niger using solid-state fermentation, Journal of Industrial Microbiology & Biotechnology, 25, 298–304.

    Article  CAS  Google Scholar 

  • Royse DJ, 1985, Effect of spawn run time and substrate nutrition on yield and size of shiitake mushroom, Mycologia, 77, 756–762.

    Article  Google Scholar 

  • Royse DJ, 1996, Yield stimulation of shiitake by millet supplementation of wood chip substrate, In-Mushroom biology and mushroom products, Royse DJ (ed), Penn State University Press, Pennsylvania, pp 277–283.

    Google Scholar 

  • Sabu A, Augur C, Swati C & Pandey A, 2006, Tannase production by Lactobacillus sp. ASR-S1 under solid-state fermentation, Process Biochemistry, 41, 575–580.

    Article  CAS  Google Scholar 

  • Sabu A, Kiran GS & Pandey A, 2005, Purification and characterization of tannin acyl hydrolase from Aspergillus niger ATCC 16620, Food Technology and Biotechnology, 43(2), 133–138.

    CAS  Google Scholar 

  • Salmones D, Mata G, Ramos LM & Waliszewski KN, 1999, Cultivation of shiitake mushroom, Lentinula edodes, in several lignocellulosic materials originating from the subtropics, Agronomie, 19, 13–19.

    Article  Google Scholar 

  • Sanchez A, Ysunza F, Beltrán-García MJ & Esqueda M, 2002, Biodegradation of viticulture wastes by Pleurotus: A source of microbial and human food and its potential use in animal feeding, Journal of Agricultural and Food Chemistry, 50, 2537–2542.

    Article  CAS  Google Scholar 

  • Sanchez C, 2004, Modern aspects of mushroom culture technology, Applied Microbiology and Biotechnology, 64, 756–762.

    Article  CAS  Google Scholar 

  • Selvakumar P, Ashakumary L & Pandey A, 1996, Microbial synthesis of starch saccharifying enzyme in solid state fermentation, Journal of Scientific & Industrial Research, 55, 443–449.

    CAS  Google Scholar 

  • Senthuran A, Senthuran V, Mattiasson B & Kaul R, 1997, Lactic acid fermentation in a recycle batch reactor using immobilized Lactobacillus casei, Biotechnology and Bioengineering, 55, 843–853.

    Article  Google Scholar 

  • Seth M & Chand S, 2000, Biosynthesis of tannase and hydrolysis of tannins to gallic acid by Aspergillus awamori, optimization of process parameters, Process Biochemistry, 36, 39–44.

    Article  CAS  Google Scholar 

  • Shankaranand VS & Lonsane BK, 1994, Ability of Aspergillus niger to tolerate metal ions and minerals in solid state fermentation system for production of citric acid, Process Biochemistry, 29, 29–37.

    Article  CAS  Google Scholar 

  • Shojaosadati SA & Babaripour V, 2002, Citric acid production from apple pomace in multi layer packed bed solid state bioreactor, Process Biochemistry, 37, 909–914.

    Article  CAS  Google Scholar 

  • Shukla J & Kar R, 2006, Potato peel as a solid state substrate for thermostable α-amylase production by thermophilic Bacillus isolates, World Journal of Microbiology & Biotechnology, 22, 417–422.

    Article  CAS  Google Scholar 

  • Silva D, Tokuioshi K, Martins ES, Da Silva R & Gomes E, 2005, Production of pectinase by solid-state fermentation with Penicillium viridicatum RFC3, Process Biochemistry, 40, 2885–2889.

    Article  CAS  Google Scholar 

  • Singh OV & Singh RP, 2006, Bioconversion of grape must into modulated gluconic acid production by Aspergillus niger ORS-4.410, Journal of Applied Microbiology, 100, 1114–1122.

    Article  CAS  Google Scholar 

  • Singh OV, Jain RK & Singh RP, 2003, Gluconic acid production under varying fermentation conditions by Aspergillus niger, Journal of Chemical Technology and Biotechnology, 78, 208–212.

    Article  CAS  Google Scholar 

  • Singh SA, Plattner H & Diekmann H, 1999, Exopolygalacturonate lyase from a thermophilic Bacillus sp, Enzyme and Microbial Technology, 25, 420–425.

    Article  CAS  Google Scholar 

  • Soares M, Christen P, Pandey A & Soccol CR, 2000, Fruity flavour production by Ceratocystis fimbriata grown on coffee husk in solid state fermentation, Process Biochemistry, 35, 857–861.

    Article  CAS  Google Scholar 

  • Soares MMCN, Da Silva R, Carmona EC & Gomes E, 2001, Pectinolytic enzyme production by Bacillus species and their potential application on juice extraction, World Journal of Microbiology & Biotechnology, 17, 79–82.

    Article  CAS  Google Scholar 

  • Soccol CR & Vandenberghe LPS, 2003, Overview of applied solid-state fermentation in Brazil, Biochemical Engineering Journal, 13, 205–218.

    Article  CAS  Google Scholar 

  • Soccol CR, Marin B, Rimbault M & Labeault JM, 1994, Potential of solid state fermentation for production of L(+) lactic acid by Rhizopus oryzae, Applied Microbiology and Biotechnology, 41, 286–290.

    Article  CAS  Google Scholar 

  • Soccol CR, Vandenberghe LPS, Rodrigues C & Pandey A, 2006, New perspectives for citric acid production and application, Food Technology and Biotechnology, 44(2), 141–149.

    CAS  Google Scholar 

  • Sodhi HK, Sharma K, Gupta JK & Soni SK, 2005, Production of a thermostable α-amylase from Bacillus sp. PS-7 by solid state fermentation and its synergistic use in the hydrolysis of malt starch for alcohol production, Process Biochemistry, 40, 525–534.

    Article  CAS  Google Scholar 

  • Soni SK, Kaur A & Gupta JK, 2003, A solid state fermentation based bacterial á-amylase and fungal glucoamylase system and its suitability for the hydrolysis of wheat starch, Process Biochemistry, 39, 185–192

    Article  CAS  Google Scholar 

  • Sugawara E, Hashimoto S, Sakurai Y & Kobayashi A, 1994, Formation by yeast of the HEMF (4-hydroxy-2 (or 5)-ethyl-5 (or 2)-methyl-3 (2H)-furanone) aroma components in Miso with aging, Bioscience, Biotechnology and Biochemistry, 58, 1134–1135.

    Article  CAS  Google Scholar 

  • Teng SS & Feidheim W, 2001, Anka and anka pigment production, Journal of Industrial Microbiology & Biotechnology, 26, 280–282.

    Article  CAS  Google Scholar 

  • Ul-Haq I, Idrees S & Rajoka MI, 2002, Production of lipases by Rhizopus oligosporous by solid-state fermentation, Process Biochemistry, 37, 637–641.

    Article  CAS  Google Scholar 

  • Uma Maheswari M & Chandra TS, 2000, Production and potential applications of a xylanase from a new strain of Streptomyces cuspidosporus, World Journal of Microbiology & Biotechnology, 16, 257–263.

    Article  Google Scholar 

  • van de Lagemaat J & Pyle DL, 2005, Modelling the uptake and growth kinetics of Penicillium glabrum in a tannic acid-containing solid-state fermentation for tannase production, Process Biochemistry, 40, 1773–1782.

    Article  CAS  Google Scholar 

  • Vandenberghe LPS, Soccol CR, Prado FC & Pandey A, 2004, Comparison of citric acid production by solid-state fermentation in flask, column, tray, and drum bioreactors, Applied Biochemistry and Biotechnology-Part A Enzyme Engineering and Biotechnology, 118(1-3), 293–303.

    CAS  Google Scholar 

  • Vattem DA & Shetty K, 2003, Ellagic acid production and phenolic antioxidant activity in cranberry pomace (Vaccinium macrocarpon) mediated by Lentinus edodes using a solid-state system, Process Biochemistry, 39, 367–379.

    Article  CAS  Google Scholar 

  • Vattem DA, Lin YT, Labbe RG & Shetty K, 2004, Phenolic antioxidant mobilization in cranberry pomace by solid-state bioprocessing using food grade fungus Lentinus edodes and effect on antimicrobial activity against select food borne pathogens, Innovative Food Science and Emerging Technologies, 5, 81–91.

    Article  CAS  Google Scholar 

  • Vickroy TB, 1985, Lactic acid, In-Comprehensive Biotechnology: the principles, applications and regulation of biotechnology in industry, agriculture and medicine (vol. 3), HW Blanch & S Drew (Eds), Dic Pergamon Press, Toronto.

    Google Scholar 

  • Villas-Bôas SG, Esposito E & Matos de Mendonça M, 2003, Bioconversion of apple pomace into a nutritionally enriched substrate by Candida utilis and Pleurotus ostreatus, World Journal of Microbiology & Biotechnology, 19, 461–467.

    Article  Google Scholar 

  • Wee YJ, Kim JN & Ryu HW, 2006, Biotechnological production of lactic acid and its recent applications, Food Technology and Biotechnology, 44, 163–172.

    CAS  Google Scholar 

  • West TP, Reed B & Xie G, 2004, Fungal citric acid production on distillers grains, Current Trends in Microbiology, 1, 97–102.

    CAS  Google Scholar 

  • Wu YB, Ravindran V & Hendriks WH, 2003, Effects of microbial phytase, produced by solid-state fermentation, on the performance and nutrient utilisation of broilers fed maize-and wheat-based diets, British Poultry Science, 44(5), 710–718.

    Article  CAS  Google Scholar 

  • Wu YB, Ravindran V & Hendriks WH, 2004a, Influence of exogenous enzyme supplementation on energy utilisation and nutrient digestibility of cereals for broilers, Journal of Science Food Agriculture, 84, 1817–1822.

    Article  CAS  Google Scholar 

  • Wu YB, Ravindran V, Thomas DG, Birtles MJ & Hendriks WH, 2004b, Influence of phytase and xylanase, individually or in combination, on performance, apparent metabolisable energy, digestive tract measurements and gut morphology in broilers fed wheat-based diets containing adequate level of phosphorus, British Poultry Science, 45(1), 76–84.

    Article  CAS  Google Scholar 

  • Yang X, Chen H, Gao H & Li Z, 2001, Bioconversion of corn straw by coupling ensiling and solid-state fermentation, Bioresource Technology, 78(3), 277–280.

    Article  CAS  Google Scholar 

  • Zheng Z & Shetty K, 2000, Solid state production of polygalacturonase by Lentinus edodes using fruit processing wastes, Process Biochemistry, 35, 825–830.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Longo, M.A., Deive, F.J., Domínguez, A., Sanromán, M. (2008). Solid-state Fermentation for Food and Feed Application. In: Pandey, A., Soccol, C.R., Larroche, C. (eds) Current Developments in Solid-state Fermentation. Springer, New York, NY. https://doi.org/10.1007/978-0-387-75213-6_17

Download citation

Publish with us

Policies and ethics