Advertisement

Gibberellic Acid Production

  • Cristina Maria
  • Monteiro Machado
  • Carlos Ricardo Soccol

Abstract

Gibberellins (GAs) are a group of diterpenoid acids that function as plant growth regulators influencing a range of developmental processes in higher plants. One of them, gibberellic acid (GA3), has received the greatest attention. It affects stem elongation, germination, elimination of dormancy, flowering, sex expression, enzyme induction and leaf and fruit senescence. GA3 is a high-valued plant growth regulator with various applications in agriculture (Arteca 1995).

Keywords

Gibberellic Acid Submerged Fermentation Gibberellin Biosynthesis Monod Model Cassava Flour 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arteca RN, 1995, Plant growth substances — principles and applications, Chapman & Hall, New York, 332 p.Google Scholar
  2. Bandelier S, Renaud R & Durand A, 1997, Production of gibberellic acid by fed-batch solid state fermentation in as aseptic pilot-scale reactor, Process Biochemistry, 32, 141–145.CrossRefGoogle Scholar
  3. Borrow A, Brian PW, Chester VE, Curtis PJ,Hemming HG, Henehan C, Jefferys EG, Lloyd PB, Nixon IS, Norris GLF, Radley M, 1955, Microbial production of gibberellins, Journal of the Science of Food and Agriculture, 6, 340–348.CrossRefGoogle Scholar
  4. Borrow A, Jefferys EG, Kessel RHJ, Lloyd EC, Lloyd PB & Nixon IS, 1961, Metabolism of Gibberella fujikuroi in stirred culture, Canadian Journal of Microbiology, 7, 227–276.Google Scholar
  5. Borrow A, Brown S, Jeferrys EG, Kessel RJH, Lloyd EC, Lloyd PB, Rothwell A, Rothwell B & Swait JC, 1964a, The kinetics of metabolism of Gibberella fujikuroi in stirred culture, Canadian Journal of Microbiology, 10, 407–444.Google Scholar
  6. Borrow A, Brown S, Jeferrys EG, Kessel RJH, Lloyd EC, Lloyd PB, Rothwell A, Rothwell B & Swait JC, 1964b, The effect of varied temperature on the kinetics of metabolism of kinetics of Gibberella fujikuroi in stirred culture, Canadian Journal of Microbiology, 10, 445–466.CrossRefGoogle Scholar
  7. Bruckner B & Blechschmidt D, 1991, The gibberellin fermentation, Critical Reviews in Biotechnology, 11, 163–192.CrossRefGoogle Scholar
  8. Cihangir N & Aksöza N, 1997, Evaluation of some food industry wastes for production of gibberellic acid by fungal source, Environmental Technology, 18, 533–537.CrossRefGoogle Scholar
  9. Cihangir N, 2002, Stimulation of the gibberellic acid synthesis by Aspergillus niger in submerged culture using a precursor, World Journal of Microbiology and Biotechnology, 3, 727–729.CrossRefGoogle Scholar
  10. Corona A, Sanchez D, Agosin E, 2005, Effect of water activity on gibberellic acid production by Gibberella fujikuroi under solid-state fermentation conditions, Process Biochemistry, 40, 2655–2658.CrossRefGoogle Scholar
  11. Cross BE, 1954, Gibberellic acid Part I, Journal of Chemical Society, 4670–4676.Google Scholar
  12. Crow JR, Thomson RJ & Mander LN, 2006, Synthesis and confirmation of structure for the gibberellin GA131 (18-hydroxy-GA4), Organic Biomolecular Chemistry, 4, 2532–2544.CrossRefGoogle Scholar
  13. Darken MA, Jensen AL & Shu P, 1959, Applied Microbiology, 7, 301–303.Google Scholar
  14. Ebune A, Al-Asheh S & Duvnjak Z, 1995, Effects of phosphate, surfactants and glucose on phytase production and hydrolysis of phytic acid in canola meal by Aspergillus ficuum during solid state fermentation, Bioresources Technology, 54, 241–247.CrossRefGoogle Scholar
  15. Elías LG, 1978, Composición química de la pulpa de café y otros subproductos. In-Pulpa de Café — composición tecnología y utilización, JE Brahan & R Bressani (eds), Institute de Nutritión de Centro América Y Panama INCAP, Bogota, pp 19–27.Google Scholar
  16. Escamilla EM, Dendooven L, Magaña IP, Parra R & De La Torre L, 2000, Optimization of gibberellic acid production by immobilized Gibberella fujikuroi mycelium in fluidized bioreactors, Journal of Biotechnology, 76, 147–155.CrossRefGoogle Scholar
  17. Gelmi C, Perez-Correa R, Gonzalez M & Agosin E, 2000, Solid substrate cultivation of Gibberella fujikuroi on an inert support, Process Biochemistry, 35, 1227–1233.CrossRefGoogle Scholar
  18. Gelmi C, Perez-Correa R & Agosin E, 2002, Modeling Gibberella fujikuroi growth and GA3 production in solid-state fermentation, Process Biochemistry, 37, 1033–1040.CrossRefGoogle Scholar
  19. Hedden P, 1999, Recent advances in gibberellin biosynthesis, Journal of Experimental Botany, 50, 553–563CrossRefGoogle Scholar
  20. Hernández E, Mendoza MD, 1976, Productión de ácido giberélico por Gibberella fujikuroi en substratos que contienen pulpa de aceituna aceite de oliva o subproductos de la extracción de este último, Revista de Agroquimica y Tecnologia de Alimientos, 16, 357–366.Google Scholar
  21. Hill TA, 1977, Hormonas Reguladoras del Crescimento Vegetal, Ediciones Omega S.A., Barcelona, 74 p.Google Scholar
  22. Holbrook AA, Edge WJW & Baily F, 1961, Spectrophotometric method for determination of gibberellic acid, Advances in Chemical Series, 28, 159–167.CrossRefGoogle Scholar
  23. Hollmann D, Switalski J, Giepel S & Onken U, 1995, Extractive fermentation of gibberellic acid by Gibberella fujikuroi, Journal of Fermentation and Bioengineering, 79, 594–600.CrossRefGoogle Scholar
  24. Hook JM Mander LN & Rudolf U, 1980, Journal of American Chemistry Society, 102, 6628–6629.CrossRefGoogle Scholar
  25. Jefferys EG, 1970, The gibberellin fermentation, Advances in Applied Microbiology, 13, 283–316.CrossRefGoogle Scholar
  26. Jones A, Pharis RP, 1987, Production of gibberellins and bikaverin by cells of Gibberella fujikuroi immobilized in carrageeanan, Journal of Fermentation Technology, 65, 717–722.CrossRefGoogle Scholar
  27. Kahlon SS, Malhotra S, ai]1986, Production of gibberellic acid by fungal mycelium immobilized in sodium alginate, Enzyme and Microbial Technology, 8, 613–616.Google Scholar
  28. Kawaide H, 2006, Biochemical and molecular analyses of gibberellin biosynthesis in fungi, Bioscience, Biotechnology and Biochemistry, 70, 583–590.CrossRefGoogle Scholar
  29. Kende H, 1967, Preparation of radioactive gibberellin A1 and its metabolism in dwarf peas, Plant Physiology, 42, 1612–1618.CrossRefGoogle Scholar
  30. Kumar PKR & Lonsane BK, 1986, Spectrofluorodensitometric estimation in thin-layer chromatography of gibberellic acid produced by solid-state fermentation, Journal of Chromatography, 369, 222–226.CrossRefGoogle Scholar
  31. Kumar PKR & Lonsane BK, 1987a, Potential of fed-batch culture in solid-state fermentation for production of gibberellic acid, Biotechnology Letters, 9, 179–182.CrossRefGoogle Scholar
  32. Kumar PKR & Lonsane BK, 1987b, Extraction of gibberellic acid from dry mouldy bran produced under solid-state fermentation, Process Biochemistry, 10, 138–143.Google Scholar
  33. Kumar PKR & Lonsane BK, 1987c, Gibberellic acid by solid state fermentation: consistent and improvement yields, Biotechnology and Bioengineering, 30, 267–271.CrossRefGoogle Scholar
  34. Kumar PKR & Lonsane BK, 1988, Batch and fed-batch solid-state fermentations: kinetics of cell growth hydrolytic enzymes production and gibberellic acid production, Process Biochemistry, April, 43–47.Google Scholar
  35. Kumar PKR & Lonsane BK, 1989, Microbial Production of Gibberellins: state of the art. Advances in Applied Microbiology, 34, 29–139.CrossRefGoogle Scholar
  36. Kumar PKR & Lonsane BK, 1990, Solid-state fermentation: physical and nutritional factors influencing gibberellic acid production, Applied Microbiology and Biotechnology, 34, 145–148.CrossRefGoogle Scholar
  37. Lale G, Jogdand VV & Gadre RV, 2006, Morphological mutants of Gibberella fujikuroi for enhanced production of gibberellic acid, Journal of Applied Microbiology, 100, 65–72.CrossRefGoogle Scholar
  38. Leitch SK, Blake PS & Mander LN, 2003, Synthesis and structure determination of three new 12α-hydroxy C20 gibberellins (GA127 GA128 and GA129), ARKIVOC Journal, 7, 145–160.Google Scholar
  39. Lu ZX, Xie ZC & Kumakura M, 1995, Production of gibberellic acid in Gibberella fujikuroi adhered onto polymeric fibrous carriers, Process Biochemistry, 30, 661–665.CrossRefGoogle Scholar
  40. Machado CMM, Oliveira BH, Pandey A & Soccol CR, Coffee husk as substrate for the production of gibberellic acid by fermentation, 2001, In-Book on Coffee Biotechnology and Quality, T Sera, CR Soccol, A Pandey & S Roussos (eds), Kluwer Academic Publishers, Dorcrecht, pp 401–408.Google Scholar
  41. Machado CMM, Soccol CR & Pandey A, 2002, Gibberellic acid production by solid sate fermentation in coffee husk, Applied Biochemistry and Biotechnology, 102, 179–192.CrossRefGoogle Scholar
  42. Machado CMM, Oishi B, Pandey A & Soccol CR, 2004, Kinetics of Gibberella fujikuroi growth and gibberellic acid production by solid-state fermentation in a packed-bed column bioreactor, Biotechnology Progress, 20, 1449–1453.CrossRefGoogle Scholar
  43. MacMillan J, 1997, Biosynthesis of the gibberellin plant hormones, Natural Product Research, 14, 221–243.CrossRefGoogle Scholar
  44. Maddox IS & Richert SH, 1977, Production of gibberellic acid using dairy waste as the basal medium, Applied and Environmental Microbiology, 1977, 201–202.Google Scholar
  45. Mander LN, 2003, Twenty years of gibberellin research, Natural Product Reports, 20, 49–69.CrossRefGoogle Scholar
  46. Martin GC, 1983, Commercial uses of gibberellins, In-The Biochemistry and Physiology of Gibberellins, A Crozier (ed), Praeger, New York, pp 395–444.Google Scholar
  47. O’Neil MJ (ed), 2001, The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals, Whitehouse Station, New Jersey, 2564 p.Google Scholar
  48. Nava-Saucedo JE, Barbotin JN & Nava-Saucedo DT, 1989, Physiological and morphological modifications in immobilized Gibberella fujikuroi mycelia, Applied Environmental Microbiology, 55, 2377–2384.Google Scholar
  49. Pandey A, 1992, Recent developments in solid-state fermentation, Process Biochemistry, 27, 109–117.CrossRefGoogle Scholar
  50. Pandey A, Soccol CR, Nigan P, Soccol VT, Vandenberghe LPS & Mohan R, 2000a, Biotechnological potential of agro-industrial residues. I: sugarcane bagasse Bioresource Technology, 74, 69–80.Google Scholar
  51. Pandey A, Soccol CR, Nigan P, Soccol VT, Vandenberghe LPS & Mohan R, 2000b, Biotechnological potential of agro-industrial residues. II: cassava bagasse Bioresource Technology, 74, 81–87.Google Scholar
  52. Pandey A, Soccol CR, Rodriguez-Leon JÁ & Nigan P (eds), 2001, Solid State Fermentation in Biotechnology — Fundamentals and Applications, Asiatech Publishers Inc., New Delhi, 221 pp.Google Scholar
  53. Pastrana LM, González MP, Torrado A & Murado MA, 1995, A fed-batch culture model for improved production of gibberellic acid from a waste medium, Biotechnology Letters, 17, 263–268.CrossRefGoogle Scholar
  54. Perraud-Gaime I, Saucedo-Castañeda G, Augur a & Roussos S, Adding value to coffee solid by-products through biotechnology, 2001, In-Coffee Biotechnology and Quality, T Sera, CR Soccol, A Pandey & S Roussos (eds), Kluwer Academic Publishers, Dorcrecht, pp 437–446.Google Scholar
  55. Perrez FJ, Vechiolla A, Pinto M & Agosin E, 1996, Gibberellic acid decomposition and its loss of biological activity in aqueous solutions, Phytochemistry, 41, 675–679.CrossRefGoogle Scholar
  56. Raimbault M, 1998, General and microbiological aspects of solid substrate fermentation, Electronic Journal of Biotechnology, 1, 26–27.CrossRefGoogle Scholar
  57. Raimbault M, Alazard D, 1980, Culture method to study fungal growth in solid fermentation European Journal of Applied Microbiology and Biotechnology, 9, 199–209.CrossRefGoogle Scholar
  58. Sanchez-Marroquin A, 1963, Microbiological production of gibberellic acid in glucose media applied microbiology, Applied Environmental Microbiology, 11, 523–528.Google Scholar
  59. Saucedo-Castañeda G, Trejo-Hernández MR, Lonsane BK, Navarro JM, Roussos S, Dufour D & Raimbault M, 1994, On-line automated monitoring and control systems for CO2 and O2 in aerobic and anaerobic solid-state fermentations, Process Biochemistry, 29, 13–24.CrossRefGoogle Scholar
  60. Shukla R, Chand S & Srivastava AK, 2005, Batch kinetics and modeling of gibberellic acid production by Gibberella fujikuroi, Enzyme and Microbial Technology, 36, 492–497.CrossRefGoogle Scholar
  61. Soccol CR, Machado CMM & Oliveira BH, 2000, Produção de ácido giberélico por fermentação no estado sólido em substrato misto, Brasil, Industrial Patent n. 525-8.Google Scholar
  62. Soccol CR & Vandenberghe LPS, 2003, Overview of applied solid-state fermentation in Brazil, Biochemical Engineering Journal, 13, 205–218.CrossRefGoogle Scholar
  63. Sponsel VM & Hedden P, 2004, Gibberellin biosynthesis and metabolism, In-Plant Hormones: Biosynthesis Signal Transduction, Action! PJ Davies (ed), Kluwer Academic Publishers, Dordrecht, pp 62–98.Google Scholar
  64. Taiz L & Zeiger E, 1991, Plant Physiology, The Benjamin / Cummings Publishing Company, California, 559 p.Google Scholar
  65. Takahashi Y, 1986, Chemistry of plant hormones, CRC Press, Boca Raton, 277 p.Google Scholar
  66. Tang Z, Zhou R & Duan Z, 2000, Separation of gibberellic acid (GA3) by macroporous adsorption resins, Journal of Chemical Technology and Biotechnology, 75, 695–700.CrossRefGoogle Scholar
  67. Tomasini A, Fajardo C & Barrios-Gonzáles J, 1997, Gibberellic acid production using different solid-state fermentation systems, Word Journal of Microbiology and Biotechnology, 13, 203–206.CrossRefGoogle Scholar
  68. Tudzynski B, 1999, Biosynthesis of gibberellins in Gibberella fujikuroi: biomolecular aspects, Applied Microbiology and Biotechnology, 52, 298–310.CrossRefGoogle Scholar
  69. Tudzynski B, 2005, Gibberellin biosynthesis in fungi: genes enzymes evolution and impact on biotechnology, Applied Microbiology and Biotechnology, 66, 597–611.CrossRefGoogle Scholar
  70. Vass RC & Jefferys EG, 1979, Gibberellic Acid, In-Economic microbiology: secondary products of metabolism,. vol 3, AH Rose (ed), Academic Press, London, pp 421–433.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Cristina Maria
    • 1
  • Monteiro Machado
    • 1
  • Carlos Ricardo Soccol
    • 2
  1. 1.Embrapa VegetablesBrasília-DFBrazil
  2. 2.Bioprocess Engineering and Biotechnology DivisionFederal University of Parana CEPCuritiba-PRBrazil

Personalised recommendations