Skip to main content

Estimation of Land Surface Parameters Through Modeling Inversion of Earth Observation Optical Data

  • Chapter
  • First Online:
Book cover Advances in Modeling Agricultural Systems

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 25))

  • 1650 Accesses

Abstract

Earth observation (EO) optical data represent one of the main sources of information in the retrieval of land surface parameters (i.e., leaf area index and surface albedo). These parameters are widely used in research and applications in agriculture for improving water and land resources management, especially in the field of precision farming, to monitor crop status, predict crop yield, detect disease and insect infestations, and support the management of farming tasks. During recent years, the technical capabilities of airborne and satellite remote sensing imagery have been improved to include hyperspectral and multiangular observations. In parallel with the advancement of observation techniques, there has been an important development in the study of the interaction of solar radiation with Earth’s surface. This process can be described by using canopy reflectance models of different complexity, which can also be used in operative applications in the field of agricultural water and land management. As such, enhanced EO data and canopy reflectance models can be combined together to reduce the empiricism of traditional methods based on simplified approaches and to increase the estimation accuracy.

In this chapter, the application of numerical inversion techniques to a canopy reflectance model is investigated both in the spectral and angular domains. An example of a case study is reported, concerning the estimation of leaf area index in an agricultural site; multidirectional and hyperspectral data, acquired by means of the Compact High Resolution Imager (CHRIS) onboard the Project for On-Board Autonomy (PROBA) platform of the European Space Agency, have been used for the numerical inversion of the canopy reflectance model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrieu, B., Baret, F., Jacquemoud, S., Malthus T., Steven, M. (1997). Evaluation of an improved version of SAIL model to simulate bi-directional reflectance of sugar beet canopies. Remote Sensing of Environment, 60, 247–257.

    Article  Google Scholar 

  2. Atzberger, C. (2002). Object-based retrieval of structural and biochemical canopy characteristics using SAIL+PROSPECT canopy reflectance model: A numerical experiment. In J. Sobrino (Ed.), Recent Advances in Quantitative Remote Sensing . Universitat de Valencia, Spain 129–138.

    Google Scholar 

  3. Atzberger, C. (2004). Object-based retrieval of biophysical canopy variables using neural nets and radiative transfer models. Remote Sensing of Environment, 93, 53–67.

    Article  Google Scholar 

  4. Baret, F., Guyot, G., Major, D. (1989). TSAVI: a vegetation index which minimizes soil brightness effects on LAI and APAR estimation. In 12th Canadian Symposium on Remote Sensing and IGARSS’90, Vancouver, Canada, 10–14 July 1989, 4 pp.

    Google Scholar 

  5. Baret, F., Guyot, G. (1991). Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sensing of Environment, 35, 161–173.

    Article  Google Scholar 

  6. Barnsley, M.J., Settle, J.J., Cutter, M., Lobb, D., Teston, F. (2004). The PROBA/CHRIS mission: A low-cost smallsat for hyperspectral, multiangle, observations of the earth surface and atmosphere. IEEE Transactions on Geoscience and Remote Sensing, 42(7), 1512–1520.

    Article  Google Scholar 

  7. Bertzekas, D.P. (1999). Nonlinear Programming. Athena Scientific. USA.

    Google Scholar 

  8. Casa, R. (2003). Multiangular remote sensing of crop canopy structure for plant stress monitoring. Ph.D. thesis. University of Dundee.

    Google Scholar 

  9. Clevers, J. (1989). The application of a weighted infrared-red vegetation index for estimating leaf area index by correcting for soil moisture. Remote Sensing of Environment, 29, 25–37.

    Article  Google Scholar 

  10. Combal, B., Baret, F., Weiss, M., Trubuil, A., Macé, D., Pragnère, A., et al. (2002). Retrieval of canopy biophysical variables from bidirectional reflectance using prior information to solve the ill-posed inverse problem. Remote Sensing of Environment, 84, 1–15.

    Article  Google Scholar 

  11. D’Urso G., Santini, A. (1996). A remote sensing and modeling integrated approach for the management of irrigation distribution systems. In Evapotranspiration and Irrigation Scheduling; Proc. Am. Soc. Agric. Engin. (ASAE), Intern. Workshop, San Antonio, TX, 1996; 435–441.

    Google Scholar 

  12. D’Urso, G., Dini, L., Vuolo, F., Guanter, L. (2004). Preliminary analysis and modelling of BRDF on CHRIS/PROBA data from SPARC 2003. Rivista Italiana di Telerilevamento, vol. II, 1015–1020.

    Google Scholar 

  13. Food Agriculture Organisation (FAO). (1998). Crop evapotraspiration. Guidelines for computing crop water requirements. Irrigation and Drainage Paper, Rome, Italy, 56.

    Google Scholar 

  14. Fernández G., Moreno, J., Gandía, S., Martínez, B., Vuolo, F., Morales, F. (2005). Statistical variability of field measurements of biophysical parameters in SPARC-2003 and SPARC-2004 data campaigns. Proc. of the SPARC Final Workshop, ESA Proceedings WPP-250, Nordwijk, The Netherlands.

    Google Scholar 

  15. Gandia, S., Fernández, G., Moreno, J. (2005). Chlorophyll content measurements in the SPARC campaigns. Proc. of the SPARC Final Workshop, ESA Proceedings WPP-250, Nordwijk, The Netherlands.

    Google Scholar 

  16. Goel, N.S. (1988). Models of vegetation canopy reflectance, their use in estimation of biophysical parameters from reflectance data. Remote Sensing Reviews, 4, 1–212.

    MathSciNet  Google Scholar 

  17. Goel, N.S. (1991). Inversion of canopy reflectance models for estimation of biophysical parameters from reflectance data. In: G. Asrar (Ed.), Theory and Applications of Optical Remote Sensing. New York: Wiley Interscience, 205–251.

    Google Scholar 

  18. Gómez, S., Gosselin, O., Barker, J. (2001). Gradient-based history—Matching with a global optimization method. Journal of Petroleum Science and Engineering, 200–208.

    Google Scholar 

  19. Gómez, S., Pérez A., Dilla, F., Alvarez, R.M. (2002). On the automatic calibration of a confined aquifer. Computational Methods in Water Resources XIV. Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  20. Gomez, S., Ono, M., Gamio, C., Fraguela, A. (2003). Reconstruction of capacitance tomography images of simulated two-phase flow regimes. Applied Numerical Mathematics, 46, 197–208.

    Article  MATH  Google Scholar 

  21. Guanter, L., Alonso, L., Moreno, J. (2005). A method for the surface reflectance retrieval from PROBA/CHRIS data over land: application to ESA SPARC campaigns. IEEE Transactions on Geoscience and Remote Sensing, 43(12), 2908–2917.

    Article  Google Scholar 

  22. Huete, A.R., Jackson, R.D., Post, D.F. (1985). Spectral response of a plant canopy with different soil background. Remote Sensing of Environment, 17, 37–53.

    Article  Google Scholar 

  23. Huete, A.R. (1987). Soil and sun angle interactions on partial canopy spectra. International Journal of Remote Sensing, 8, 1307–1317.

    Article  Google Scholar 

  24. Jacquemoud, S., Baret, F. (1990). PROSPECT: a model of leaf optical properties spectra. Remote Sensing of Environment, 34, 75–91.

    Article  Google Scholar 

  25. Kimes, D.S., Knyazikhin, Y., Privette, J.L., Abuelgasim, A.A., Gao, F. (2000). Inversion methods for physically-based models. Remote Sensing of Environment, 18, 381–439.

    Google Scholar 

  26. Lewis, P., Saich, P. (2006). From Web courses material at the Department of Geography, University College London.

    Google Scholar 

  27. Levenberg, K. (1944). A method for the solution of certain problems in least squares. Quarterly of Applied Mathematics, 2, 164–168.

    MathSciNet  MATH  Google Scholar 

  28. LI-COR. (1992). LAI -2000 plant canopy analyzer instruction manual. Lincoln, NE: LI-COR.

    Google Scholar 

  29. Major, D., Schaalje, G., Wiegand, C., Blad, B. (1992). Accuracy and sensitivity analysis of SAIL model-predicted reflectance of maize. Remote Sensing of Environment, 41, 61–70.

    Article  Google Scholar 

  30. Marquardt, D. (1963). An algorithm for least-squares estimation of nonlinear parameters. SIAM Journal on Applied Mathematics, 11, 431–441.

    Article  MathSciNet  MATH  Google Scholar 

  31. Moreno, J.F., Melix, J., Sobrino, J.A., Martinez-Lozano, J.A., Calpe-Maravilla, J., Calera Belmonte A. (2004). The SPECTRA Barrax Campaign (SPARC): an overview and first results from CHRIS data. Proceedings of the 2nd SPARC Workshop, ESA Proceedings, Nordwijk, The Netherlands.

    Google Scholar 

  32. Monteith, J.L. Unsworth, M.H. (1990). Principles of Environmental Physics, 2nd ed. London: Edward Arnold.

    Google Scholar 

  33. Monsi, M., Saeki, T. (1954). Uber den Lichtfaktor in den Pflanzengessellschafte und seine Bedeuting fur die Stoffproduktion. Journal of Japanese Botany, 14, 22–52.

    Google Scholar 

  34. Myneni, R.B., Ross, J., Asrar, G. (1989). A review on the theory of photon transport in leaf canopies. Agricultural and Forest Meteorology, 45, 1–153.

    Article  Google Scholar 

  35. Nicodemus, F.E., Richmond, J.C., Hsia, J.J., Ginsberg, I.W., Limperis, T. (1977). Geometrical Considerations and Nomenclature for Reflectance. NBS Monograph, No. 160. National Bureau of Standards, U.S. Department of Commerce, 52.

    Google Scholar 

  36. Nocedal, J., Wright, S.J. (1999). Numerical Optimization. Springer Series in Operations Research. New York: Springer Verlag.

    Google Scholar 

  37. Pinty, B., Gobron, N., Widlowski, J.L., Gerstl, S.A.W., Verstraete, M.M., Antunes, M., Bacour, C., Gascon, F., Gastellu, J.-P., Goel, N., Jacquemoud, S., North, P., Qin, W., Thompson, R. (2000). The RAdiation transfer Model Intercomparison (RAMI) exercise. Journal of Geophysical Research. 106, D11: 11937–11956.

    Google Scholar 

  38. Sellers, P.J. (1985). Canopy reflectance, photosynthesis and transpiration. International Journal of Remote Sensing 6, 1335–1372.

    Article  Google Scholar 

  39. Thenkabail, P.S., Enclona, M.S., Ashton, B., Van Der Meer, F.D. (2004). Accuracy assessments of hyperspectral waveband performance for vegetation analysis applications. Remote Sensing of Environment, 91, 354–376.

    Article  Google Scholar 

  40. Tucker, C.J. (1978). A comparison of satellite sensor bands for monitoring vegetation. Photogrammetric Engineering & Remote Sensing 44, 1369–1380.

    Google Scholar 

  41. Verhoef, W. (1984). Light scattering by leaf layers with application to canopy reflectance modelling: the SAIL model. Remote Sensing of Environment, 16, 125–141.

    Article  Google Scholar 

  42. Verhoef, W. (1998). Theory of radiative transfer models applied in optical remote sensing of vegetation canopies. Ph.D. thesis. National Aerospace Lab., Amsterdam, The Netherlands.

    Google Scholar 

  43. Vuolo, F. (2006). Physically based approaches for monitoring vegetation from space. New generation sensors and operational perspectives. PhD Thesis, University of Naples “Federico II.”

    Google Scholar 

Download references

Acknowledgments

S.G. has carried out this work in the framework of GNCS Visiting Professor Program 2007 and of Italy–Mexico Bi-lateral Project 2007–2008 on “Problemi inversi in idrologia: metodologie numeriche innovative.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido D’Urso .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

D’Urso, G., Gomez, S., Vuolo, F., Dini, L. (2009). Estimation of Land Surface Parameters Through Modeling Inversion of Earth Observation Optical Data. In: Advances in Modeling Agricultural Systems. Springer Optimization and Its Applications, vol 25. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-75181-8_15

Download citation

Publish with us

Policies and ethics