Ontology-Based Simulation Applied to Soil, Water, and Nutrient Management

  • Howard Beck
  • Kelly Morgan
  • Yunchul Jung
  • Jin Wu
  • Sabine Grunwald
  • Ho-young Kwon
Part of the Springer Optimization and Its Applications book series (SOIA, volume 25)


Ontology-based simulation is an approach to modeling in which an ontology is used to represent all elements of a model. In this approach, modeling is viewed as a knowledge representation problem rather than a software engineering problem. Ontology-based techniques can be applied to describe system structure, represent equations and symbols, establish connections to external databases, manage model bases, and integrate models with additional information resources. Ontology reasoners have the potential to automatically compare, organize, search for, and discover models and model elements. We present an environment for building simulations based on the Lyra ontology management system, which includes Web-based visual design tools used for constructing models. An example application based on a model of soil, water, and nutrient management in citrus that uses the approach is also presented.


Soil Profile Unify Modeling Language Irrigation Schedule Property Restriction Model Ontology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Athanasiadis, I. N., A. E. Rizzoli, M. Donatelli and L. Carlini. 2006. Enriching software model interfaces using ontology-based tools. iEMSs.Google Scholar
  2. 2.
    Beck, H. W., L. G. Albrigo and S. Kim. 2004. DISC citrus planning and scheduling program. In: Proceeding of the Seventh International Symposium on Modelling in Fruit Research and Orchard Management, pp. 25–32.Google Scholar
  3. 3.
    Benjamin, P. C., M. Patki and R. J. Mayer. 2006. Using ontologies for simulation modeling. In: Winter Simulation Conference 2006: 1151–1159.Google Scholar
  4. 4.
    Cuske, C., T. Dickopp and S. Seedorf. 2005. JOntoRisk: An ontology-based platform for knowledge-based simulation modeling in financial risk management. European Simulation and Modeling Conference 2005.Google Scholar
  5. 5.
    Design Science. 1996. MathType.
  6. 6.
    Devanbu, P., R. J. Brachman, P. G. Selfridge and B. W. Ballard. 1990. LaSSIE: A knowledge-based software information system. Proceedings, 12th International Conference on Software Engineering. March 26–30, 1990. pp. 249–261.Google Scholar
  7. 7.
    Donatelli, M., G. Bellocchi and L. Carlini. 2006a. A software component for estimating solar radiation. Environmental Modelling and Software 21(3): 411–416.CrossRefGoogle Scholar
  8. 8.
    Donatelli, M., G. Bellocchi and L. Carlini. 2006b. Sharing knowledge via software components: models on reference evapotranspiration. European Journal of Agronomy 24(2): 186–192.CrossRefGoogle Scholar
  9. 9.
    Eitzinger, J., M. Trnka, J. Hosch, Z. Zalud and M. Dubrovsky. 2004. Comparison of CERES, WOFOST and SWAP models in simulating soil water content during growing season under different soil conditions. Ecological Modeling 171(3): 223–246.CrossRefGoogle Scholar
  10. 10.
    Ewert, F., H. Van Keulen, M. K. Van Ittersum, K. E. Giller, P. A. Leffelaar and R. P. Roetter. 2006. Multi-scale analysis and modelling of natural resource management. In: Proceedings of the iEMSs Third Biannual Meeting International Environmental Modelling and Software Society.Google Scholar
  11. 11.
    Fishwick, P. A. and J. A. Miller. 2004. Ontologies for modeling and simulation: issues and approaches. In: Proceeding of 2004 Winter Simulation Conference.Google Scholar
  12. 12.
    Forrester, J. W. 1971. World Dynamics. Cambridge, MA: Productivity Press, p. 144.Google Scholar
  13. 13.
    Friedman-Hill, E. 2007. Jess, the rule engine for Java platform. Sandia National Laboratories.
  14. 14.
    Haan, C. T., H. P. Johnson and D. L. Brakensiek. 1982. Hydrologic modeling of small watersheds ASAE Monograph No. 5.Google Scholar
  15. 15.
    Islam, A. S. and M. Piasecki. 2004. A stategy for web-based modeling of hydrodynamic processes. In: 17th ASCE Engineering Mechanics Conference. EM2004 June 13–16.Google Scholar
  16. 16.
    Ittersum, M. K. V., F. Ewert, T. Heckelei, J. Wery, J. Alkan Olsson, E. Andersen, I. Bezlepkina, F. Brouwer, M. Donatelli, G. Flichman, L. Olsson, A. E. Rizzoli, T. van der Wal, J. E. Wien and J. Wolf. 2007. Integrated assessment of agricultural systems – A component-based framework for the European Union (SEAMLESS). Agricultural Systems (in press).Google Scholar
  17. 17.
    Jones, J. W., B. A. Keating and C. H. Porter. 2001. Approaches to modular model development. Agricultural Systems 70(2–3): 421–443.CrossRefGoogle Scholar
  18. 18.
    Jurisica, I., J. Mylopoulos and E. Yu. 2004. Ontologies for knowledge management: an information systems perspective. Knowledge and Information Systems 6: 380–401.CrossRefGoogle Scholar
  19. 19.
    Lu, H.-Y., C.-T. Lu, M.-L. Wei and L.-F. Chan. 2004. Comparison of different models for nondestructive leaf area estimation in taro. Agronomy Journal 96(2): 448–453.CrossRefGoogle Scholar
  20. 20.
  21. 21.
    Microsoft. 2003. Microsoft Office Equation Editor.
  22. 22.
    Miller, J. A., G. T. Baramidze, A. P. Sheth and P. A. Fishwick. 2004. Investigating ontologies for simulation modeling. 37th Annual Simulation Symposium.Google Scholar
  23. 23.
    Morgan, K. T., H. W. Beck, J. M. S. Scholberg and S. Grunwald. 2006. In-season irrigation and nitrogen decision support system for citrus production. In: Proceedings 4th World Congress on Computers in Agriculture. July 2006, pp. 640–654.Google Scholar
  24. 24.
    Morgan, K. T., T. A. Obreza, and J. M. S. Scholberg. 2007. Characterizing orange tree root distribution in space and time. Journal of the American Society for Horticultural Science 132(2): 262–269.Google Scholar
  25. 25.
    OpenMath. 2000.
  26. 26.
    OWL. 2005. Web Ontology Language Guide.
  27. 27.
    Park, M. and P. A. Fishwick. 2005. Integrating dynamic and geometry model components through ontology-based interface. Simulation 81(12): 795–813.CrossRefGoogle Scholar
  28. 28.
    Peart, R. M. and R. B. Curry. 1998. Agricultural Systems Modeling and Simulation. New York: Marcel Dekker.Google Scholar
  29. 29.
    Raubel, M. and W. Kuhn. 2004. Ontology-based task simulation. Spatial Cognition and Computation 4: 15–37.CrossRefGoogle Scholar
  30. 30.
    Reddy, V. and V. Anbumozhi. 2004. Development and application of crop simulation models for sustainable natural resource management. In: International Agricultural Engineering Conference. IAEC, October 11–14, 2004, Beijing, P.R. China, p. 10-035AGoogle Scholar
  31. 31.
    Rizzoli, A. E., M. Donatelli, R. Muetzelfeldt, T. Otjens, M. G. E. Sevensson, F. V. Evert, F. Villa and J. Bolte. 2004. SEAMFRAME, a proposal for an integrated modelling framework for agricultural systems. Proceedings of the 8th ESA Congress, pp. 331–332.Google Scholar
  32. 32.
    Scholten, H., A. Kassahun, J. C. Refsgaard, T. Kargas, C. Gavardinas and A. J. M. Beulens. 2007. A methodology to support multidisciplinary model-based water management. Environmental Modeling & Software 22(5): 743–759.CrossRefGoogle Scholar
  33. 33.
  34. 34.
  35. 35.
    Wolfram. 2007. Mathematica.

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Howard Beck
    • 1
  • Kelly Morgan
  • Yunchul Jung
  • Jin Wu
  • Sabine Grunwald
  • Ho-young Kwon
  1. 1.Agricultural and Biological Engineering DepartmentInstitute of Food and Agricultural Sciences, University of FloridaGainesvilleUSA

Personalised recommendations