Every chemical reaction or interaction causes a change in refractive index, including such bioconjugate interactions as antibody/antigen, DNA hybridization and enzyme/substrate interactions. Interferometry is an optical method for measuring refractive index changes. With the proper choice of sensing film, an interferometer can identify and quantify the presence of a biological moiety. An interferometer compares optically two almost equivalent light paths – one that interrogates the refractive index change caused by a bioconjugate interaction, and the other that serves as a reference that cancels out any nonspecific interactions. Interferometers have the capability of detecting refractive index changes of 10-7, which corresponds to ppb concentrations of small molecules, pg/mL concentrations of toxins and proteins, and 100s–1000s of whole cells, viruses and spores. Several optical interferometric designs are described. Most configurations combine a bioconjugate reaction isolated on a rigid support with a long interaction length of mm to cm to achieve high sensitivity. The most common interferometric configuration utilizes a planar optical waveguide. The evanescent field associated with a wave-guided beam extends above the waveguide surface where the bioreceptor is immobilized. The bioconjugate interaction perturbs the propagating beam and the extent of this perturbation is measured by comparing the phase of the light traveling along the sensing channel with that traveling along a reference channel that is not functionalized with the bioreceptor. The phase change is measured by optically combining the two beams at the output of the interferometer to create an interference pattern, a series of dark and light fringes that is caused by constructive and destructive interference. By proper choice of receptor molecule and calibration, both the identity and the quantity of a specific bioentity can be measured with the interferometric biosensor.


Surface Plasmon Resonance Porous Silicon Interference Pattern Refractive Index Change Planar Waveguide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akkin T, Dave DP, Milner TE and Rylander III HG (2002) Interferometric Fiber-Based Optical Biosensor to Measure Ultra-SmallChanges in Refractive Index. SPIE Proc. 4616:9CrossRefGoogle Scholar
  2. Alieva EV and Konopsky VN (2004) Biosensor Based on Surface Plasmon Interferometry Independent on Variations of Liquid’s Refraction Index. Sens. Actuators B 99:90–97CrossRefGoogle Scholar
  3. Brandenburg A (1997) Differential Refractometry by anIntegrated-Optical Young Interferometer. Sens. Actuators B38:266–271CrossRefGoogle Scholar
  4. Brandenburg A, Krauter R, Kunzel M and Schulte H (2000) Interferometric Sensors for Detection of Surface-Bound Bioreactions.Appl. Opt. 39:6396–6405CrossRefGoogle Scholar
  5. Brosinger F, Freimuth H, Lacher M, Ehrfeld W, Gedig E, Katerkamp A,Spencer F, Cammann K (1997) A Label-Free Affinity Sensor withCompensation of Unspecific Protein Interaction by a Highly SensitiveIntegrated Optical Mach–Zehnder Interferometer on Silicon. Sens. Actuators B 44:350–355Google Scholar
  6. Campbell DP (2005) Interferometric Sensors for Monitoring OurEnvironment. LAT Conf. Proc., St. Petersburg, RussiaGoogle Scholar
  7. Campbell DP, Gottfried DS and Cobb-Sullivan JM (2004) Groundwater Monitoring of VOCs with an Interferometric Optical Waveguide Sensor, SPIE Proc. 5586:136CrossRefGoogle Scholar
  8. Campbell DP, Gottfried DS, Scheffter SM, Beck MC and Halpern MD (2003) Interferometric Optical Waveguide Sensor for Anthrax SporeDetection. ACS National Meeting Proc., New YorkGoogle Scholar
  9. Chapman RG, Ostuni E, Takayama S, Holmlin RE, Yan L and Whitesides GM (2000) Surveying for Surfaces that Resist the Adsorption of Proteins. J. Am. Chem. Soc. 122:8303–8304CrossRefGoogle Scholar
  10. Chiu M-H, Wang S-F and Chang R-S (2005) D-Type Fiber Biosensor Based on Surface Plasmon Resonance Technology and Heterodyne Interferometry. Opt. Lett. 30:233–235CrossRefGoogle Scholar
  11. Choquette SJ and Locascio-Brown L (1984) Thermal Detection of Enzyme-Labelled Antigen-Antibody Complexes Using Fiber-Optic Interferometry. Sens Actuators B 22:89–96CrossRefGoogle Scholar
  12. Cross G, Ren Y and Freeman NJ (1999) Young’s Fringes from Vertically Integrated Slab Waveguides: Applications to Humidity Sensing. J. Appl. Phys. 86:6483–6499CrossRefGoogle Scholar
  13. Cross GH, Reeves AA, Brand S, Popplewell JF, Peel LL, Swann MJ and Freeman NJ (2003) A New Quantitative Optical Biosensor for Protein Characterization. Biosensors and Bioelectronics 19:383–390Google Scholar
  14. Dancil K-PS, Greiner DP and Sailor MJ (1999) A Porous Silicon Optical Biosensor: Detection of Reversible Binding of IgG to a Protein A-Modified Surface. J. Am. Chem. Soc. 121:7925–7930CrossRefGoogle Scholar
  15. DeStefano L, Moretti L, Lamberti A, Longo O, Rocchia M, Rossi AM, Arcari P and Rendina I (2004) Optical Sensors for Vapors, Liquids, and Biological Molecules Based on Porous Silicon Technology. IEEE Trans. Nanotechnology, 3:49–54CrossRefGoogle Scholar
  16. Drapp B, Piehler J, Brecht A, Granglitz G, Luff BJ, Wilkinson JS and Ingenhoff J (1997) Integrated Optical Mach-Zehnder Interferometers as Simazine Immunoprobes. Sens. Actuators B 38:277–282CrossRefGoogle Scholar
  17. Fischer K and Muller J (1992) Sensor Application of SiON Integrated Optical Waveguides on Silicon. Sens. Actuators B 9:209–213Google Scholar
  18. Fratamico P, Strobaugh T, Medina M and Gehring A (1998) Detection of Escherichia coli 0157:H7 Using a Surface Plasmon Resonance Sensor. Biotechnol. Tech. 12:571–576CrossRefGoogle Scholar
  19. Gato L and Srivastava R (1996) Time-Dependent Surface-Index Change in Ion-Exchanged Waveguides. Opt. Commun. 123:483–486CrossRefGoogle Scholar
  20. Gauglitz GA, Brecht A, Kraus G and Nahm W (1993) Chemical and Biochemical Sensors Based on Interferometry at Thin (Multi-) Layers. Sens. Actuators B. 11:21–27CrossRefGoogle Scholar
  21. Gottfried DS (2006) Private communicationGoogle Scholar
  22. Grace KM, Shrouf K, Honkanen S, Agras P, Katila P, Leppihalme M, Johnson RG, Yang X, Swanson B and Peyghambarian N (1997) A Phase-Locked Fibre Interferometer with Intensity Noise Compensation. Electronic Lett. 33:1650–1651CrossRefGoogle Scholar
  23. Grigorenko AN, Nikitin PI and Kabashin AV (1999) Phase Jumps and Interferometric Surface Plasmon Resonance Imaging. Appl. Phys. Lett. 75:3917–3919CrossRefGoogle Scholar
  24. Hartman NF (1990) Optical Sensing Apparatus and Method. U.S. Patent No. 4 940 328Google Scholar
  25. Hartman NF (1997) Integrated Optic Interferometric Sensor. U.S. Patent No. 5623561Google Scholar
  26. Hartman NF, Campbell DP and Gross M (1988) Multimode Waveguide Chemical Sensor. Proc. IEEE-LEOS ’88, 298Google Scholar
  27. Hartman NF, Cobb JM and Edwards JG (1998) Optical System-on-a-Chip for Chemical and Biochemical Sensing: the Platform. SPIE Proc. 3537:302–309Google Scholar
  28. Heideman RG (1993) PhD thesis, University of Twente, NetherlandsGoogle Scholar
  29. Heideman RG, Kooyman RPH and Greve J (1994) Immunoreactivity of Adsorbed Anti Human Chorionic Gonadotropin Studied with an Optical Waveguide Interferometric Sensor. Biosensors and Bioelectronics 9:33–43CrossRefGoogle Scholar
  30. Heideman RG, Veldhuis GJ, Jager EWH and Lambeck PV (1996) Fabrication and Packaging of Integrated Chemo-Optical Sensors. Sens. Actuators B 35:234–240CrossRefGoogle Scholar
  31. Helmers HP, Greco R, Rustad R, Kherrat R, Bouvier G and Benech P (1996) Performance of a Compact, Hybrid Optical Evanescent-Wave Sensor for Chemical and Biological Applications, Appl. Opt. 35:676–680CrossRefGoogle Scholar
  32. Hermanson GT (1996) Bioconjugate Techniques. San Diego, CA: Academic Press, USAGoogle Scholar
  33. Heuberger K and Lukosz W (1986) Embossing Technique for Fabricating Surface Relief Gratings on Hard Oxide Waveguides. Appl. Optics 25:1499–1504Google Scholar
  34. Ho HP, Lam WW and Wu SY (2002) Surface Plasmon Resonance Sensor Based on the Measurement of Differential Dhase. Rev. Sci. Instr. 73:3534–3539CrossRefGoogle Scholar
  35. Horner SC, Mace CR, Rothberg LJ and Miller BL (2006) A Proteomic Biosensor for Enteropathogenic E. coli. Biosensors and Bioelectronics 21:1659–1663CrossRefGoogle Scholar
  36. Horvath R, Linvold LR and Larsen NB (2002a) Reverse-Symmetry Waveguides: Theory and Fabrication. Appl. Phys. B. 74:383–393CrossRefGoogle Scholar
  37. Horvath R, Pedersen HC and Larsen NB (2002b) Demonstration of Reverse Symmetry Waveguide Sensing in Aqueous Solutions. Appl. Phys. Lett. 81:2166–2168CrossRefGoogle Scholar
  38. Horvath R, Pedersen HC, Skivesen N, Selmeczi D and Larsen NB (2003) Optical Waveguide Sensor for On-Line Monitoring of Bacteria. Opt. Lett. 28:1233–1235Google Scholar
  39. Hradetzky D and Brandenburg A (2000) Planar Interferometric Sensor for Refractometric and Immunosensing Applications. Europtrode V 179Google Scholar
  40. Hsiu F-M, Chen S-J, Tsai C-H, Tsou C-Y, Su Y-D, Lin G-Y, Huang K-T, Chyou J-J, Ku W-C, Chiu S-K and Tzeng C-M (2002) Surface Plasmon Resonance Imaging System with Mach-Zehnder Phase-Shift Interferometry for DNA Micro-Array Hybridization. SPIE Proc. 4819:167CrossRefGoogle Scholar
  41. Kabashin AV and Nikitin PI (1997) Interferometer Based on a Surface-Plasmon Resonance for Sensor Applications. Quantum Electronics 27:653–654CrossRefGoogle Scholar
  42. Kersey AD, Marrone MJ and Davis MA (1990) Polarization Insensitive Fiber Optic Michelson Interferometer. SPIE Proc. 1367:2CrossRefGoogle Scholar
  43. Kinrot N (2006) Investigation of a Periodically Segmented Waveguide Fabry-Perot Interferometer for Use as a Chemical/Biosensor. J. Lightwave Tech. 24:2139–2145CrossRefGoogle Scholar
  44. Koster TM, Posthuma NE and Lambeck PV (2000) Fully Integrated Optical Polarimeter. Europtrode V, 179Google Scholar
  45. Koubova V, Brynda E, Karasova L, Skvor J, Homola J, Dostalek J, Tobiska P and Rosicky J (2001) Detection of Foodborne Pathogens Using Surface Plasmon Resonance Biosensors. Sens. Actuators B. 74:100–105CrossRefGoogle Scholar
  46. Lechuga LM, Sepulveda B, Llobera A, Calle A and Dominguez C (2003) Integrated Optical Silicon IC Compatible Nanodevices for Biosensing Applications, SPIE Proc. 5119:140CrossRefGoogle Scholar
  47. Lillie JJ, Thomas MA, Denis KA, Jokerst NM, Henderson C and Ralph SE (2004) Modal Pattern Analysis and Experimental Investigation of Multimode Interferometric Sensing: a Path to a fully Integrated Silicon-CMOS-Based Chem/Bio Sensors. 2004 IEEE LEOS Annual Meeting Conference Proceedings, LEOS 2004:352Google Scholar
  48. Lin VS-Y, Motesharei K, Dancil K-PS, Sailor MJ and Ghadiri MR (1997) A Porous Silicon-Based Optical Interferometric Biosensor. Science 278:840–843Google Scholar
  49. Luff BJ, Wilkinson JS, Piehler J, Hollenback U, Ingenhoff J and Fabricius N (1998) Integrated Optical Mach-Zehnder Biosensor. J. Lightwave Tech. 16:583–592CrossRefGoogle Scholar
  50. Lukosz W (1995) Integrated Optical Chemical and Direct Biochemical Sensors. Sens. Actuators B 29:37–50CrossRefGoogle Scholar
  51. Lukosz W and Tiefenthaler K (1983) Integrated Optical Input Couplers as Biochemical Sensors. IEEE Conf. Proc., 2nd Eur. Conf. Integrated Optics, Florence 227:152Google Scholar
  52. Lukosz W and Tiefenthaler K (1989) Sensitivity of Grating Couplers as Integrated-Optical Chemical Sensors. J. Opt. Soc. Am. B 6:209–220Google Scholar
  53. Lukosz W and Tiefenthaler K (1988) Sensitivity of integrated optical grating and prism couplers as Biochemical sensors. Sens. Actuators B 15:273–284CrossRefGoogle Scholar
  54. Lukosz W, NellenPM, Stamm C and Weiss P (1990) Output Grating Couplers on Planar Waveguides as Integrated Optical Chemical Sensors. Sens. Actuators B 1:585–588Google Scholar
  55. Lukosz W, Stamm C, Moser HR, Ryf R and Dubendorfer J (1997) Difference Interferometer with New Phase-Measurement Method as Integrated-Optical Refractometer, Humidity Sensor and Biosensor. Sens. Actuators B 38:316–323CrossRefGoogle Scholar
  56. Manning C, Gross MJ, Hanashaw T, Kirlin RL and Samuels A (2004) Compact Interferometers for Chemical and Biological Agent Detection. SPIE Proc. 5268:125Google Scholar
  57. Millar CA and Hutchins RH (1978) Manufacturing Tolerances for Silver-Sodium Ion-Exchange Planar Optical Waveguides. J. Phys. D; Appl. Phys. 11: 1567–1576CrossRefGoogle Scholar
  58. Murata T, Ishizawa H, Motoyama I and Tanaka A (2006) Preparation of High-Performance Optical Coatings with Fluoride Nanoparticle Films Made from Autoclaved Sols. Appl. Optics 45:1465–1468CrossRefGoogle Scholar
  59. Nellen PM, Tiefenthaler K and Lukosz W (1988) Integrated optical Input Grating Couplers as Biochemical Sensors. Sens. Actuators B 15:285–295CrossRefGoogle Scholar
  60. Nikitin PI, Beloglazov AA, Kochergin VE, Valeiko MV and Ksrenevich TI (1999) Surface Plasmon Resonance Interferometry for Biological and Chemical Sensing. Sens. Actuators B 54:43–50CrossRefGoogle Scholar
  61. Nikitin PI, Gorshkov BG, Nikitin EP and Ksenevich TI (2005) Picoscope, a new label-free biosensor. Sens. Actuators B. 111–112:500–504CrossRefGoogle Scholar
  62. Nikitin PI, Gorshkov BG, Valeiko MV and Rogov SI (2000a) Spectral-Phase Interference Method for Detecting Biochemical Reactions on a Surface. Quantum Electronics 30:1099–1104CrossRefGoogle Scholar
  63. Nikitin PI, Gorshkov BG, Valeiko MV, Savchuk AI, Savchuk OA, Steiner G, Kuhne C, Huebner A and Salzer R (2000b) Surface Plasmon Resonance Interferometry for Micro-Array Biosensing. Sens. Actuators B 85:189–193CrossRefGoogle Scholar
  64. Nikitin PI, Valeiko MV and Gorshkov BG (2003) New direct Optical Biosensors for Multi-Analyte Detection. Sens. Actuators B. 90: 46–51CrossRefGoogle Scholar
  65. Nishihara H, Haruna M and Suhara T (1985) Optical Integrated Circuits, Chapter 2. New York: McGraw-Hill p 226.Google Scholar
  66. Prieto F, Sepulveda B, Calle A, Llobera A, Dominguez C, Abad A, Montoya A and Lechuga LM (2003a) Integrated Optical Interferometric Nanodevice Based on Silicon Technology for Biosensor Applications. Nanotechnology 14:907–912CrossRefGoogle Scholar
  67. Prieto F, Sepulveda B, Calle A, Llobera A, Dominguez C and Lechuga LM (2003b) Integrated Mach–Zehnder Interferometer Based on ARROW Structures for Biosensor Applications. Sens. Actuators B 92:151–158CrossRefGoogle Scholar
  68. Ramos BL, Choquette SJ and Nell Jr. NF (1986) Embossable Grating Couplers for Planar Waveguide Optical Sensors. Anal. Chem. 68:1245–1249CrossRefGoogle Scholar
  69. Ranganath TR and Wang S (1977) Ti-Diffused LiNbO3 Branched Waveguide Modulators: Performance and Design, IEEE J. Quantum Electron. QE-13: 290CrossRefGoogle Scholar
  70. Schipper EF, Brugman AM, Dominguez C, Lechuga LM, Kooyman RPH and Greve J (1997) The Realization of an Integrated Mach-Zehnder Waveguide Immunosensor in Silicon Technology. Sens. Actuators B 40: 147–153CrossRefGoogle Scholar
  71. Schmitt K, Schirmer B and Brandenburg A (2004) Development of a Highly Sensitive Interferometric Biosensor. SPIE Proc. 5461:22CrossRefGoogle Scholar
  72. Schneider BH, Dickinson EL, Vach MD, Hoijer JV and Howard LV (2000) Optical Chip Immunoassay for hCG in Human Whole Blood. Biosensors Bioelectronics 15:597–604Google Scholar
  73. Schneider BH, Edwards JG and Hartman NF (1997) Hartman Interferometer: Versatile Integrated Optic Sensor for Label-Free, Real-Time Quantification of Nucleic Acids, Proteins, and Pathogens. Clinical Chem. 43: 1757–1808Google Scholar
  74. Seo KH, Brackett RE, Hartman NF and Campbell DP (1999) Development of a Rapid Response Biosensor for Detection of Salmonella Typhimurium. J. Food Protection 62:431–437Google Scholar
  75. Sohn H, LetantS, Sailor MJ and Trogler WC (2000) Detection of Fluorophosphonate Chemical Warfare Agents by Catalytic Hydrolysis with a Porous Silicon Interferometer. J. Am. Chem. Soc.,122:5399–5400Google Scholar
  76. Stamm C and Lukosz W (1993) Integrated Optical Difference Interferometer as Refractometer and Chemical Sensor. Sens. Actuators B 11:177–181CrossRefGoogle Scholar
  77. Stamm C and Lukosz W (1994) Integrated Optical Difference Interferometer as Biochemical Sensor. Sens. Actuators B 18:183–188CrossRefGoogle Scholar
  78. Stamm C, Dangel R and Lukosz W (1998) Biosensing with the Integrated-Optical Difference Interferometer: Dual-wavelength operation. Opt. Commun. 153: 347–359.Google Scholar
  79. Su Y-D, S-J Chen and Yeh T-L (2005) Common-Path Phase-Shift Interferometry Surface Plasmon. Resonance Imaging System. Opt. Lett. 30:1488–1490CrossRefGoogle Scholar
  80. Tiefenthaler K and Lukosz W (1984) Integrated Optical Switches and Gas Sensors. Optics Lett. 9:137–139Google Scholar
  81. Tiefenthaler K and Lukosz W (1985) Grating Couplers as Integrated Optical Humidity and Gas Sensors. Thin Solid Films 126:205–211CrossRefGoogle Scholar
  82. Varma MM, Peng L, Regnier FE and Notle DD (2005) Label-Free Multi-Analyte Detection Using a Bio-CD. SPIE Proc. 5699:503CrossRefGoogle Scholar
  83. Wagner EK and Hewlett MJ (2004) Basic Virology. Blackwell, Malden Massachussetts, p 125Google Scholar
  84. Walker RG and Wilkinson CDW (1983) Integrated Optical Ring Resonators Made by Silver Ion-exchange in Glass. Appl. Optics 22:1029–1035Google Scholar
  85. Watts H, Lowe C and Pollard-Knight D (1994) Optical Biosensor for Monitoring Microbial Cells. Anal. Chem. 66:2465–2470CrossRefGoogle Scholar
  86. Weisser M, Tovar G, Mittler-Neher S, Knoll W, Brosinger F, Greimuth H, Lacher M and Ehrfeld W (1999) Specific Bio-Recognition Reactions Observed with an Integrated Mach–Zehnder Interferometer. Biosensors and Bioelectronics 14:405–411CrossRefGoogle Scholar
  87. Xu J, Suarez D and Gottfried DS (2007) Detection of Avian Influenza Virus Using an Interferometric Biosensor. Anal. Bioanal Chem. 389:1193–1199CrossRefGoogle Scholar
  88. Yeom S, Moon I and Javidi B (2006) Real-Time 3D Sensing, Visualization and Recognition of Dynamic Biological Micro-Organisms. IEEE Proc. 94:550–566CrossRefGoogle Scholar
  89. Ymeti A, Greve J, Laqmbeck PV, Wink T, van Hovell SWFM, Beumer TAM, Wijn RR, Heideman RG, Subramaniam V and Kanger JS (2007) Fast, Ultrasensitive Virus Detection Using a Young Interferometer Sensor. Nano Lett. 7:394–397CrossRefGoogle Scholar
  90. Ymeti A, Kanger JS, Greve J, Besselink GAJ, Lambeck PV, Wijn R and Heideman RG (2005) Integration of Microfluidics with a Four-Channel Integrated Optical Young Interferometer Immunosensor. Biosensors and Bioelectronics 20:1417–1421CrossRefGoogle Scholar
  91. Ymeti A, Kanger JS, Greve J, Lambeck PV, Wijn R and Heideman RG (2003) Realization of a Multichannel Integrated Young Interferometer Chemical Sensor. Appl. Opt. 42:5649–5660CrossRefGoogle Scholar
  92. Ymeti A, Kanger JS, Wijn R, Lembeck PV and Greve J (2002) Development of a Multichannel Integrated Interferometer Immmunosensor. Sens. Actuators B 83:1–7CrossRefGoogle Scholar
  93. Young T (1804) The Bakerian Lecture: Experiments and Calculations Relative to Physical Optics, Phil. Trans. R. Soc. 94:1CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Daniel P. Campbell
    • 1
  1. 1.Georgia Tech Research InstituteAtlantaUSA

Personalised recommendations