Integrated Deep-Probe Optical Waveguides for Label Free Bacterial Detection

  • Mohammed Zourob
  • Nina Skivesen
  • Robert Horvath
  • Stephan Mohr
  • Martin B. McDonnell
  • Nicholas J. Goddard


Rapid, specific, and sensitive detection of pathogenic bacteria is very important in areas like food safety, medical diagnostics, hospital infection, and biological warfare. Optical evanescent wave sensors are evolving to meet these challenges. Evanescent wave biosensors generate an electromagnetic wave at the sensor surface that penetrates 100–200 nm into the surrounding medium, and have proven to be a highly sensitive tool to monitor interactions in the close vicinity of the sensor surface. However, the use of such waveguides for bacterial detection is problematic for several reasons. These include the short penetration depth of the evanescent field of these waveguides (100–200 nm) compared to the typical size of a bacterium (1–5 μm), which places the majority of the bound cell outside the evanescent field. In addition, the low refractive index contrast between the bacterium cytoplasm and the aqueous environments in which detection is usually performed, as well as the availability and accessibility of antigens on the bacterium surface binding to the biorecognition elements. Finally, the sensor performance can be limited due to (1) the mass transport of large analytes like bacteria, which limits the binding to the immobilized recognition receptors; (2) non-specific binding; and (3) long analysis time.

This chapter will focus on the development of different configurations of deep-probe optical evanescent wavesensors such as metal-clad leaky waveguides (MCLW) and waveguide sensors with low-index substrates for bacterialdetection. In addition, two complete detection systemsintegrated with physical force fields to overcome these problems will be presented. These sensor systems are basedon MCLW sensors and integrated with, respectively, an electric field and ultrasound standing waves as a physical force to concentrate and enhance the capture of bacteria spores into immobilized antibodies on the sensor surface.The integration improves the detection limit by a few orders of magnitude and shortens the analysis time significantly.


Waveguide Mode Total Internal Reflection Evanescent Wave Effective Refractive Index Sensor Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdel-Hamid I, Ivnitski D, Atanasov P, Wilkins E (1999) Highly sensitive flow-injection immunoassay system for rapid detection of bacteria. Anal. Chem. Acta 399:99–108Google Scholar
  2. Ad´nyi N, V´radi M, Kim N and Szendrö I (2006) Development of new immunosensors for determination of contaminants in food. Current Appl. Phys. 6:279–286CrossRefGoogle Scholar
  3. Balasubramanian S, Sorokulova IB, Vodyanoy VJ and Simonian AL (2007) Lytic phage as aspecific and selective probe for detection of Staphylococcus aureus-Asurface plasmon resonance spectroscopic study. Biosens. Bioelectron.22:948–955CrossRefGoogle Scholar
  4. Born M, Wolf E (1999) Principles of Optics, 7th ed. Cambridge University Press, Cambridge, UKGoogle Scholar
  5. Buzby JC, Roberts T, Lin J, McDonald JM (1996) Economic Report 741:Bacterial foodborne disease: medical costs and productivity losses. USDA, Washington, D.C.Google Scholar
  6. Campbell DP, Gottfried DS, Scheffter SM, Beck MC and Halpern MD (2003) Interferometric Optical Waveguide Sensor for Anthrax Spore Detection. ACS National Meeting Proceedings, New YorkGoogle Scholar
  7. DeFlaun MF, Condee CW (1997) Electrokinetic transport of bacteria. J.Hazard. Mater. 55:263–277CrossRefGoogle Scholar
  8. DeMarco DR, Saaski EW, McCrae DA, Lim DV (1999) Rapid detection of Escherichia coli O157:H7 in ground beef using fibreoptic biosensor. J. Food Protect. 62:711–716Google Scholar
  9. DeMarco DR, Lim DV (2001) Direct detection of Escherichia coliO157:H7 in unpasteurized apple juice with an evanescent wave sensor. J. Rapid Meth. Automation Micro 9:241–257CrossRefGoogle Scholar
  10. Ferreira AP, Werneck MM, Ribeiro RM (1999) Aerobiological pathogen detection by evanescent wave fibre optic sensor. Biotechnol. Tech.13:447–452CrossRefGoogle Scholar
  11. Ferreria AP, Werneck MM, Ribeiro RM (2001) Development of an evanescent-field fibre optic sensor for Escherichia coliO157:H7. Biosens. Bioeletron. 16:399–408CrossRefGoogle Scholar
  12. Fratamico P, Strobaugh T, Medina M, Gehring A (1998) Detection of Escherichia coli 0157:H7 using a surface plasmon resonance sensor. Biotechnol. Tech. 127:571–576Google Scholar
  13. Hawkes JJ, Long MJ, Coakley WT, McDonnell MB (2004) Ultrasonic deposition of cells on a surface. Biosens. Bioelectron. 19:1021–1028Google Scholar
  14. Hirmo S, Artursson E, Puu G, Wadstorm T and Nilsson B (1998)Characterization of Helicobacter Pylori interactions with sialglycoconjugates using a resonant mirror biosensor. Anal. Biochem. 257:63–66CrossRefGoogle Scholar
  15. Hirmo S, Artursson E, Puu G, Wadstorm T and Nilsson B (1999)Helicobacter Pylori interactions with human gastric mucin studied with a resonant mirror biosensor. J. Microbiol. Meth.37:177–182CrossRefGoogle Scholar
  16. Horvath R, Lindvold LR and Larsen NB (2002a) Reverse-symmetry waveguides:Theory and Fabrication. Applied Physics B 74:383–393CrossRefGoogle Scholar
  17. Horvath R, Pedersen HC and Larsen NB (2002b) Demonstration of reverse symmetry waveguide sensing in aqueous solutions. Appl.Phys. Lett. 81:2166–2168CrossRefGoogle Scholar
  18. Horvath R, Pedersen HC, Skivesen N, Selmeczi D and Larsen NB (2003a) Optical waveguide sensor for on-line monitoring of bacteria. Optics Letters 28:1233–1235CrossRefGoogle Scholar
  19. Horvath R, Lindvold LR and Larsen NB (2003b) Fabrication of all-polymer freestanding waveguides. J. Micromech. Microeng. 13:419–424CrossRefGoogle Scholar
  20. Horvath R, Pedersen HC, Skivesen N, Selmeczi D and Larsen NB (2005a)Monitoring of living cell attachment and spreading using reverse symmetry waveguide sensing. Appl. Phys. Lett. 86, Art. No. 071101Google Scholar
  21. Horvath R, Pedersen HC, Skivesen N, Svanberg C, Larsen NB (2005b)Fabrication of reverse symmetry polymer waveguide sensor chips on nanoporous substrates using dip-floating. Journal of Micromechanics and Microengineering 15:1260–1264CrossRefGoogle Scholar
  22. Horvath R, Pedersen HC, Cuisinier FJG (2006) Guided wave sensing of polyelectrolyte multilayers. Applied Physics Letters 88:111102–111104CrossRefGoogle Scholar
  23. Hughes MP, Morgan H (1999) An evanescent-field technique for dielectrophoresis studies of colloidal particles. Meas. Sci. Technol.10:759–762CrossRefGoogle Scholar
  24. Kim N, Park I-S, Kim W-Y (2007) Salmonella detection with a direct-binding optical grating coupler immunosensor, Sens. Actuators B 121:606–615CrossRefGoogle Scholar
  25. Kulagina NV, Shaffer KM, Anderson GP, Ligler FS, Taitt CR (2006) Antimicrobial peptide-based array for Escherichia coli and Salmonella screening. Anal. Chimica Acta 575:9–15CrossRefGoogle Scholar
  26. Leonard P, Heatry S, Quinn J and O’Kennedy R (2004) A generic approach for the detection of whole listeria monocytogenes cells in contaminated samples using surface plasmon resonance. Biosens. Bioelectron. 19:1331–1335CrossRefGoogle Scholar
  27. Leonard P, Heatry S, Wyatt G, Quinn J and O’Kennedy R (2005). Development of surface plasmon resonance-based immunoassay for listeria monocytogenes. J. Food Protec. 68:728–735Google Scholar
  28. Mead PS, Slutsker L, Dietz V, McCaige LF, Bresse JS, Shapiro C, Griffin PM,Tauxe RV (1999) Food related illness and death in the United States. Emerg. Infec. Dis. 5:607–725Google Scholar
  29. Medina M, Houten L, Cooke P, Tu S (1997) Real-time analysis of antibody binding interactions with immobilized E. coli O157:H7 cells using the BIAcore. Biotechnol. Tech. 11:173–176CrossRefGoogle Scholar
  30. Ngundi MM, Taitt CR, McMurry SA, Kahne D, Ligler FS (2006) Detection of bacterial toxins with monosaccharide arrays. Biosensors and Bioelectronics 21:1195–1201CrossRefGoogle Scholar
  31. Perkins E, Squirrell D (2000) Development of instrumentation to allow the detection of microorganisms using light scattering in combination with surface plasmon resonance. Biosens.Bioelectron. 14:853–859CrossRefGoogle Scholar
  32. Podgorsek P, Franke H (1998) Optical determination of molecule diffusion coefficients in polymer films. Appl. Phys. Lett. 73:2887–2889CrossRefGoogle Scholar
  33. Rohrbach A (2000)Observing secretory granules with a multi-angle evanescent wave microscope. Biophys. J. 78:2641–2654Google Scholar
  34. Rowe C, Tender L, Feldstein M, Golden J, Scruggs S, MacCraith B, Cras J,Ligler F (1999) Array Biosensor for Simultaneous Identification of Bacterial, Viral, and Protein Analytes. Anal. Chem. 71:3846–3852Google Scholar
  35. Salamon Z, Wang Y, Tollin G and Macleod HA (1994)Assembly and molecular organization of self-assembled lipid bilayers on solid substrates monitored by surface plasmon resonance spectroscopy. Biochim. Biophys. Acta 1195:267–275CrossRefGoogle Scholar
  36. Salamon Z, Macleod HA and Tollin G (1997) Coupled plasmon-waveguide resonators: A new spectroscopic tool for probing proteolipid film structure and properties, Biophys. J. 73:2791–2797Google Scholar
  37. Salamon Z, Brown MI and Tollin G (1999) Plasmon resonance spectroscopy: probing molecular interactions within membranes. TIBS 24:213–219Google Scholar
  38. Salamon Z and Tollin G (2001) Optical anisotropy in lipid bilayer membranes: Coupled plasmon-waveguide resonance measurements of molecular orientation, polarizability, and shape. Biophys. J. 80:1557–1567Google Scholar
  39. Salamon Z, Lindblom G and Tollin G (2003) Plasmon-waveguide resonance and impedance spectroscopy studies of the interaction between penetratin and supported lipid bilayer membranes. Biophys.J. 84: 1796–1807Google Scholar
  40. Salamon Z and Tollin G (2004) Graphical analysis of mass and anisotropy changes observed by plasmon-waveguide resonance spectroscopy can provide useful insights into membrane protein function. Biophys. J. 86:2508–2516CrossRefGoogle Scholar
  41. Sapsford KE, Rasooly A, Taitt CR, Ligler FS (2004) Rapid Detection of Campylobacter and Shigella species in food samples using an array biosensor. Analytical Chemistry 76:433–440CrossRefGoogle Scholar
  42. Sapsford KE, Ngundi MM, Moore MH, Lassman ME, Shriver-Lake LC, Taitt CA, Ligler FS (2006) Rapid detection of foodborne contaminants using an Array Biosensor. Sens. Actuators B 113:599–607CrossRefGoogle Scholar
  43. Seo KH, Brackett RE, Hartman NF and Campbell DP (1999) Development of a Rapid Response Biosensor for Detection of Salmonella Typhimurium. J. Food Protection 62:431–437Google Scholar
  44. Shepard JRE, Danin-Poleg Y, Kashi Y and Walt DR (2005) Array-Based Binary Analysis for Bacterial Typing. Anal. Chem. 77:319–326CrossRefGoogle Scholar
  45. Shriver-Lake LC, Turner S, Taitt CR (2007) Rapid detection of Escherichia Coli O157:H7 spiked into food matrices. Anal. Chimica Acta 584:66–71CrossRefGoogle Scholar
  46. Sipe DM, Schoonmaker KP, Herron JN, Mostert MJ (2000) Evanescent planar waveguide detection of biological warfare simulants. Proc. SPIE 3913:215–222CrossRefGoogle Scholar
  47. Skivesen N, Horvath R, Pedersen HC (2003) Multimode reverse-symmetry waveguide sensor for broad-range refractometry. Optics Letters 28:2473–2475Google Scholar
  48. Skivesen N, Horvath R, Pedersen HC (2005a) Optimization of metal-clad waveguide sensors. Sens. Actuators B 106:668–676Google Scholar
  49. Skivesen N, Horvath R, Pedersen HC (2005b) Peak-type and dip-type metal-clad waveguide sensing. Opt. Lett. 30:1659–1661CrossRefGoogle Scholar
  50. Skivesen N, Horvath R, Pedersen HC, Thinggaard S, Larsen NB (2007) Deep-probe metal-clad waveguide biosensors. Biosens. Bioelectronics 22:1282–1288Google Scholar
  51. Spengler JF, Jekel M, Christensen KT, Adrian RJ, Hawkes JJ, Coakley WT(2000) Observation of yeast cell movement and aggregation in a small-scale MHz-ultrasonic standing wave field. Bioseparation 9:329–341CrossRefGoogle Scholar
  52. Taitt CR, Golden JP, Shubin YS, Shriver-Lake LC, Sapsford KE, Rasooly A, Ligler FS (2004a) A portable array biosensor for detecting multiple analytes in complex samples. Microbial Ecology 47:175–185CrossRefGoogle Scholar
  53. Taitt CR, Shubin YS, Angel R, Ligler FS (2004b) Detection of Salmonella enterica serovar typhimurium by using a rapid, array-based immunosensor. Applied and Environmental Microbiology 70:152–158CrossRefGoogle Scholar
  54. Taylor AD, Ladd J, Yu QM, Chen SF, Homola J and Jiang SY (2006) Quantitative and simultaneous detection of four foodborne bacterial pathogens with a multi-channel SPR sensor. Biosens. Bioelectron. 22:752–758CrossRefGoogle Scholar
  55. Tien PK(1977)Integrated optics and new wave phenomena. Rev. Mod.Phys. 49:361–420Google Scholar
  56. Tiefenthaler K, Lukosz W (1985) Grating couplers as integrated optical humidity and gas sensors. Thin Solid Films 126: 205–211CrossRefGoogle Scholar
  57. Tiefenthaler K, Lukosz W (1989) Sensitivity of grating couplers as integrated-optical chemical sensors. J. Opt. Soc. Am. 6:209–220Google Scholar
  58. Watts H, Lowe C, Pollard-Knight D (1994) Optical biosensor for monitoring microbial cells. Anal. Chem. 66:2465–2470CrossRefGoogle Scholar
  59. Whyte W, Lidwell OM, Lowbury EJ, Blowers R, (1983) Suggested bacteriological standards for air in ultraclean operating rooms. J. Hosp. Infect. 4:133–139CrossRefGoogle Scholar
  60. Zeikus G, Johnson EA (eds) (1991) Mixed Cultures in Biotechnology. McGraw-Hill, New York, pp 341–372Google Scholar
  61. Zhu P, Shelton DR, Karns JS, Sundaram A, Li S, Amstutz P, Tang C-M (2005)Detection of water-borne E. coli O157 using the integrating waveguide biosensor. Biosens Bioelectronics 21:678–683CrossRefGoogle Scholar
  62. Zourob M, Mohr S, Treves-Brown BJ, Fielden PR, McDonnell MB, Goddard NJ (2005a) An Integrated Metal Clad Leaky Waveguide Sensor for Detection of Bacteria. Anal. Chem.77:232–242CrossRefGoogle Scholar
  63. Zourob M, Mohr S, Treves-Brown BJ, Fielden PR, McDonnell MB, Goddard NJ (2005b) An integrated optical leaky waveguide sensor with electrically induced concentration system for the detection of bacteria. Lab Chip 5:1360–1365CrossRefGoogle Scholar
  64. Zourob M, Hawkes JJ, Coakley WT, Mohr S, Treves-Brown BJ, Fielden PR, McDonnell MB, Goddard NJ (2005c) Optical Leaky Waveguide Sensor for Detection of Bacteria with Ultrasound Attractor Force. Anal. Chem. 77:6163–6168CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Mohammed Zourob
    • 1
  • Nina Skivesen
    • 2
  • Robert Horvath
    • 3
  • Stephan Mohr
    • 4
  • Martin B. McDonnell
    • 5
  • Nicholas J. Goddard
    • 4
  1. 1.Biosensors DivisionBiophage PharmaMontreal (QC)
  2. 2.Inano Interdisciplinary Nanoscience CenterUniversity of AarhusDenmark
  3. 3.Nanotechnology CentreCranfield UniversityUK
  4. 4.School of Chemical Engineering and Analytical Science (CEAS)The University of ManchesterUK
  5. 5.Defence Science and Technology LaboratoryPorton DownUK

Personalised recommendations