Bacterial Detection Using Evanescent Wave-Based Fluorescent Biosensors

  • Kim E. Sapsford
  • Lisa C. Shriver-Lake


Detection and identification of bacteria is an important aspect of our world today. Outbreaks of pathogenic bacteria, either occurring naturally in food or possibly being used as weapons by bioterrorists for contamination of food, air, and water, are constantly in the news. Identifying the specific bacteria responsible for these outbreaks and their potential source is of great importance. Biosensors, specifically evanescent wave-based fluorescence biosensors, are evolving to meet these challenges. In evanescent wave sensors, light is launched into an optical waveguide at such an angle that the light is internally reflected completely at the interface of the waveguide and the surrounding medium. An electromagnetic wave is generated at the surface that penetrates 100–200 nm into the surrounding medium (air, buffer). Fluorophores that are bound within this region by the target bacteria and a recognition molecule are excited. Many different configurations of this method have been developed and will be discussed in this chapter.


Fluorescence Resonance Energy Transfer Cholera Toxin Evanescent Wave Bacterial Toxin Evanescent Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amersham Biosciences (2006) Fluorescence screening reagents guide. nsf/vLookupDoc/242718157-B653/file/FSR_brochure.pdf (Accessed 12/1/2006)Google Scholar
  2. AnaSpec Inc. (2006) Superior fluorescent labeling dyes - hilytefluor. (Accessed 12/1/2006)Google Scholar
  3. Araya-Kleinsteuber B, Roque ACA, Kioupritzi E, Stevenson AC and Lowe C (2006) Magnetic acoustic resonance immunoassay (MARIA): A multifrequency acoustic approach for the non-labeled detection of biomolecular interactions. J. Mol. Recognit. 19:379–385CrossRefGoogle Scholar
  4. Bergwerff AA and van Knapen F (2006) Surface plasmon resonance biosensors for detection of pathogenic microorganisms: Strategies to secure food and environmental safety. J. AOAC Int 89:826–831Google Scholar
  5. Berkenpas E, Millard P and Pereira da Cunha M (2006) Detection of Escherichia coli O157:H7 with langasite pure shear horizontal surface acoustic wave sensors. Biosens. Bioelectron. 21:2255–2262Google Scholar
  6. Boyaci IH, Aguilar ZP, Hossain M, Halsall HB, Seliskar CJ and Heineman WR (2005) Amperometric determination of live Escherichia coli using antibody-coated paramagnetic beads. Anal. Bioanal. Chem. 382:1234–1241CrossRefGoogle Scholar
  7. Brecht A, Klotz A, Barzen C, Gauglitz G, Harris RD, Quigley GR, Wilkinson JS, Sztajnbok P, Abuknesha RA, Gascon J, Oubina A and Barcelo D (1998) Optical immunoprobe development for multiresidue monitoring in water. Anal. Chim. Acta 362:69–79CrossRefGoogle Scholar
  8. Campbell GA and Mutharasan R (2005) Detection of pathogen Escherichia coli 0157:H7 using self-excited PZT-glass microcantilevers. Biosens. Bioelectron. 21:462–473CrossRefGoogle Scholar
  9. Delehanty JB and Ligler FS (2002) A microarray immunoassay for simultaneous detection of proteins and bacteria. Anal. Chem. 74:5681–5687CrossRefGoogle Scholar
  10. Deobagkar DD, Limaye V, Sinha S and Yadava RDS (2005) Acoustic wave immunosensing of Escherichia coli in water. Sens. Actuator B-Chem. 104:85–90CrossRefGoogle Scholar
  11. Dhadwal HS, Kemp P, Alle, J and Dantzler MM (2004) Capillary waveguide nucleic acid based biosensor. Anal. Chim. Acta 501:205–217CrossRefGoogle Scholar
  12. Epstein JR, Biran I and Walt DR (2002) Fluorescence-based nucleic acid detection and microarrays. Anal. Chim. Acta 469:3–36CrossRefGoogle Scholar
  13. Gauglitz G (2005) Direct optical sensors: Principles and selected applications. Anal. Bioanal. Chem. 381:141–155CrossRefGoogle Scholar
  14. Gijs MAM (2004) Magnetic bead handling on-chip: New opportunities for analytical applications. Microfluid. Nanofluid. 1:22–40Google Scholar
  15. Golden JE, Shriver-Lake LC, Sapsford KE and Ligler FS. (2005a) A “Do-it-yourself” Array biosensor. Methods 37:65–72CrossRefGoogle Scholar
  16. Golden JP, Taitt CR, Shriver-Lake LC, Shubin YS and Ligler FS (2005b) A portable automated multianalyte biosensor. Talanta 65:1078–1085CrossRefGoogle Scholar
  17. Goldman ER, Clapp AR, Anderson GP, Uyeda HT, Mauro JM, Medintz IL and Mattoussi H (2004) Multiplexed toxin analysis using four colors of quantum dot fluororeagents. Anal. Chem. 76:684–688CrossRefGoogle Scholar
  18. Grandin HM, Stadler B, Textor M and Voros J (2006) Waveguide excitation fluorescence microscopy: A new tool for sensing and imaging the biointerface. Biosens. Bioelectron. 21:1476–1482CrossRefGoogle Scholar
  19. Herron JN, Wang H-K, Tan L, Brown SZ, Terry AH, Durtschi JD, Simon EM, Astill ME, Smith RS and Christensen DA (2006) Planar waveguide biosensors for point-of-care clinical and molecular diagnostics, in Fluorescence Sensors and Biosensors, R. B. Thompson, Ed., 283–332 Boca Raton, FL: Taylor and Francis Group, LLCGoogle Scholar
  20. Hibi K, Abe A, Ohashi E, Mitsubayashi K, Ushio H, Hayashi T, Ren H and Endo H (2006) Combination of immunomagnetic separation with flow cytometry for detection of Listeria monocytogenes. Anal. Chim. Acta 573–574:158–163CrossRefGoogle Scholar
  21. Hollars CW, Puls J, Bakajin O, Olsan B, Talley CE, Lane SM and Huser T (2006) Bio-assay based on single molecule fluorescence detection in microfluidic channels. Anal. Bioanal. Chem. 385:1384–1388CrossRefGoogle Scholar
  22. Horvath R, Pedersen HC, Skivesen N, Selmeczi D and Larsen NB (2003) Optical waveguide sensor for on-line monitoring of bacteria. Opt. Lett. 28:1233–1235CrossRefGoogle Scholar
  23. Hoshino A, Fujioka K, Manabe N, Yamaya S-L, Goto Y, Yasuhara M and Yamamoto K (2005) Simultaneous multicolor detection system of the single-molecular microbial antigen with total internal reflection fluorescence microscopy. Microbiol Immunol 49:461–470Google Scholar
  24. Invitrogen Corporation. (2006) The Alexa fluor dye series. (Accessed 12/1/2006)Google Scholar
  25. Invitrogen Corporation (2006) The handbook: A guide to fluorescent probes and labeling technologies. (Accessed 12/1/2006)Google Scholar
  26. Kelly D, Grac, KM, Song X, Swanson BI, Frayer D, Mendes SB and Peyghambarian N (1999) Intergrated optical biosensor for detection of multivalent proteins. Opt. Lett. 24:1723–1725CrossRefGoogle Scholar
  27. Ko S and Grant SA (2006) A novel fret-based optical fiber biosensor for rapid detection of Salmonella typhimurium. Biosens. Bioelectron. 212:1283–1290CrossRefGoogle Scholar
  28. Kulagina N, Shaffer KM, Anderson GP, Ligler FS and Taitt CR (2006) Antimicrobial peptide-based biosensor assays for E. coli and Salmonella cells. Anal. Chim. Acta 575:9CrossRefGoogle Scholar
  29. Kulagina N, Shaffer KM, Ligler FS and Taitt CR (2007) Antimicrobial peptides, new recognition molecules for challenging targets. Sens. Actuator B-Chem. 121:150–157CrossRefGoogle Scholar
  30. Kulagina NV, Lassman ME, Ligler FS and Taitt CR (2005) Antimicrobial peptides for detection of bacteria in biosensor assays. Anal. Chem. 77:6504–6508CrossRefGoogle Scholar
  31. Lakowicz JR (1999) Principles of fluorescence spectroscopy, New York: Kluwer Academic/Plenum PublishersGoogle Scholar
  32. Lathrop AA, Jaradat ZW, Haley T and Bhunia AK (2003) Characterization and application of a Listeria monocytogenes reactive monoclonal antibody c11e9 in a resonant mirror biosensor. J. Immunol. Methods 281:119–128CrossRefGoogle Scholar
  33. Lehr H-P, Brandenburg A and Sulz G (2003) Modeling and experimental verification of the performance of TIRF-sensing systems for oligonucleotide microarrays based on bulk and integrated optical planar waveguides. Sens. Actuator B-Chem. 92:303–314CrossRefGoogle Scholar
  34. Leonard P, Hearty S, Wyatt G, Quinn J and O’Kennedy R (2005) Development of a surface plasmon resonance-based immunoassay for Listeria monocytogenes. J. Food Prot. 68:728–735Google Scholar
  35. Ligler FS, Breimer M, Golden JP, Nivens DA, Dodson JP, Green TM, Haders DP and Sadik OA (2002) Integrating waveguide biosensor. Anal. Chem. 74:713–719CrossRefGoogle Scholar
  36. Ligler FS, Sapsford KE, Golden JP, Shriver-Lake LC, Taitt CR, Dyer MA, Barone S and Myatt CJ (2007) The Array Biosensor: Portable, automated systems. Anal. Sci. 23:5–10CrossRefGoogle Scholar
  37. Lim DV (2003) Detection of microorganisms and toxins with evanescent wave fiber-optic biosensors. IEEE Proceedings 91:902–907CrossRefGoogle Scholar
  38. Lin H-C and Tsai W-C (2003) Piezoelectric crystal immunosensor for the detection of staphylococcal enterotoxin b. Biosens. Bioelectron. 18:1479–1483CrossRefGoogle Scholar
  39. Magnani M, Galluzzi L and Bruce IJ (2006) The use of magnetic nanoparticles in the development of new molecular detection systems. J. Nanosci. Nanotechnol. 6:2302–2311CrossRefGoogle Scholar
  40. Martinez JS, Grace WK, Grace KM, Hartman N and Swanson BI (2005) Pathogen detection using single mode planar optical waveguides. J. Mater. Chem. 15:4639–4647CrossRefGoogle Scholar
  41. Mashanov GI, Tacon D, Knight AE, Peckham M and Molloy JE (2003) Visualizing single molecules inside living cells using total internal reflection fluorescence microscopy. Methods 29:142–152CrossRefGoogle Scholar
  42. Matveeva E, Gryczynski Z, Malicka J, Gryczynski I and Lakowicz JR (2004) Metal-enhanced fluorescence immunoassays using total internal reflection and silver island-coated surfaces. Anal. Biochem. 334:303–311CrossRefGoogle Scholar
  43. Matveeva E, Gryczynski Z, Malicka J, Lukomska J, Makowiec S, Berndt KW, Lakowicz JR and Gryczynski I (2005) Directional surface plasmon-coupled emission: Application for an immunoassay in whole blood. Anal. Biochem. 344:161–167Google Scholar
  44. Medina MB (2006) A biosensor method for detection of staphylococcal enterotoxin A in raw whole egg. J Rapid Meth Aut Mic 14:119–132CrossRefGoogle Scholar
  45. Medintz IL, Sapsford KE, Clapp AR, Pons T, Higashiya S, Welch JT and Mattoussi H (2006) Designer variable repeat length polypeptides as scaffolds for surface immobilization of quantum dots. J. Phys. Chem. B 110:10683–10690CrossRefGoogle Scholar
  46. Medintz IL, Sapsford KE, Konnert JH, Chatterji A, Lin T, Johnson JE and Mattoussi H (2005a) Decoration of discretely immobilized cowpea mosaic virus with luminescent quantum dots. Langmuir 21:5501–5510CrossRefGoogle Scholar
  47. Medintz IL, Uyeda HT, Goldman ER and Mattoussi H (2005b) Quantum dot bioconjugates for imaging, labeling and sensing. Nat. Mater. 4 435–446CrossRefGoogle Scholar
  48. Minardo A, Bernini R, Mottola F and Zeni L (2006) Optimization of metal-clad waveguides for sensitive fluorescence detection. Optics Express 14:3512–3527CrossRefGoogle Scholar
  49. Moran-Mirabal JM, Edel JB, Meyer GD, Throckmorton D, Singh AK and Craighead HG (2005) Micrometer-sized supported lipid bilayer arrays for bacterial toxin binding studies through total internal reflection fluorescence microscopy. Biophys. J. 89:296–305CrossRefGoogle Scholar
  50. Moreno-Bondi MC, Taitt CR, Shriver-Lake LC and Ligler FS (2006) Multiplexed measurement of serum antibodies using an array biosensor. Biosens. Bioelectron. 21:1880–1886CrossRefGoogle Scholar
  51. Morozov VN and Morozava TY (2006) Active bead-linked immunoassay on protein microarrays. Anal. Chim. Acta 564:40–52CrossRefGoogle Scholar
  52. Muhammad-Tahir A and Alocilja EC (2003) A conductometric biosensor for biosecurity. Biosens. Bioelectron. 18:813–819CrossRefGoogle Scholar
  53. Ngundi MM, Taitt CR, McMurray SA, Kahne D and Ligler FS (2006a) Simultaneous determination of kinetic parameters for the binding of cholera toxin to immobilized sialic acid and monoclonal antibody using an array biosensor. Biosens. Bioelectron. 22:124–130CrossRefGoogle Scholar
  54. Ngundi MM, Taitt CR, McMurry SA, Kahne D and Ligler FS (2006b) Detection of bacterial toxins with monosaccharide arrays. Biosens. Bioelectron. 21:1195–1201CrossRefGoogle Scholar
  55. Nivens DE, Chambers JQ, Anderson TR, Tunlid A, Smit J and White DC (1993) Monitoring microbial adhesion and biofilm formation by attenuated total reflection/fourier transform infrared spectroscopy. J. Microbial. Methods 17:199–213CrossRefGoogle Scholar
  56. O’Brien T, Johnson LH, Aldrich JL, Allen SG, Liang LT, Plummer AL, Krak SJ and Boiarski AA (2000) The development of immunoassays to four biological threat agents in a bidiffractive grating biosensor. Biosens. Bioelectron. 14:815–828CrossRefGoogle Scholar
  57. Pattnaik P and Srivastav A (2006) Surface plasmon resonance - applications in food science research: A review. J Food Sci Technol 43:329–336CrossRefGoogle Scholar
  58. Pierce Biotechnology Inc. (2006) Dylight 549, 649, 680, and 800 reactive dyes and conjugates. (Accessed 12/1/2006)Google Scholar
  59. Radke SA and Alocilja EC (2005a) A high density microelectrode array biosensor for detection of E. coli o157:H7. Biosens. Bioelectron. 20:1662–1667CrossRefGoogle Scholar
  60. Radke SM and Alocilja EC (2004) Design and fabrication of a microimpedance biosensor for bacterial detection. IEEE Sensors 4:434–440CrossRefGoogle Scholar
  61. Radke SM and Alocilja EC (2005b) A microfabricated biosensor for detecting foodborne bioterrorism agents. IEEE Sensors 5:744–750CrossRefGoogle Scholar
  62. Rahman S, Lipert RJ and Porter MD (2006) Rapid screening of pathogenic bateria using solid phase concentration and diffuse reflectance spectroscopy. Anal. Chim. Acta 569:83–90CrossRefGoogle Scholar
  63. Rogers KR (2006) Recent advances in biosensor techniques for environmental monitoring. Anal. Chim. Acta 568:222–231CrossRefGoogle Scholar
  64. Rowe-Taitt CA, Cras JJ, Patterson CH, Golden JP and Ligler FS (2000a) A ganglioside-based assay for cholera toxin using an array biosensor. Anal. Biochem. 281:123–133CrossRefGoogle Scholar
  65. Rowe-Taitt CA, Golden JP, Feldstein MJ, Cras JJ, Hoffman KE and Ligler FS (2000b) Array biosensor for detection of biohazards. Biosens. Bioelectron. 14:785–794CrossRefGoogle Scholar
  66. Rowe-Taitt CA, Hazzard JW, Hoffman KE, Cras JJ, Golden JP and Ligler FS (2000c) Simultaneous detection of six biohazardous agents using a planar waveguide array biosensor. Biosens. Bioelectron. 15:579–589CrossRefGoogle Scholar
  67. Rowe CA, Scruggs SB, Feldstein MJ, Golden JP and Ligler FS (1999a) An array immunosensor for simultaneous detection of clinical analytes. Anal. Chem. 71:433–439CrossRefGoogle Scholar
  68. Rowe CA, Tender LM, Feldstein MJ, Golden JP, Scruggs SB, MacCraith BD, Cras JJ and Ligler FS (1999b) Array biosensor for simultaneous identification of bacterial, viral, and protein analytes. Anal. Chem. 71:3846–3852CrossRefGoogle Scholar
  69. Ruan C, Yang L. and Li Y (2002) Immunobiosensor chips for detection of Escherichia coli O157:H7 using electrochemical impedance spectroscopy. Anal. Chem. 74:4814–4820CrossRefGoogle Scholar
  70. Rubina AY, Dyukova VI, Dementieva EI, Stomakhin AA, Nesmeyanov VA, Grishin EV and Zasedatelev AS (2005) Quantitative immunoassay of biotoxins on hydrogel-based protein microchips. Anal. Biochem. 340:317–329CrossRefGoogle Scholar
  71. Sapsford KE, Berti L and Medintz IL (2004a) Fluorescence resonance energy transfer. Concepts, applications and advances. Minerva Biotec. 16:247–273Google Scholar
  72. Sapsford KE, Berti L and Medintz IL (2006a) Materials for fluorescence resonance energy transfer analysis: Beyond traditional donor-acceptor combinations. Angewandte Chemie-Int Ed 45:4562–4588CrossRefGoogle Scholar
  73. Sapsford KE, Medintz IL, Golden JP, Deschamps JR, Uyeda HT and Mattoussi H (2004b) Surface-immobilized self-assembled protein-based quantum dot nanoassemblies. Langmuir 20:7720–7728CrossRefGoogle Scholar
  74. Sapsford KE, Ngundi MM, Moore MH, Lassman ME, Shriver-Lake LC, Taitt CA and Ligler FS (2006b) Rapid detection of foodborne contaminants using an array biosensor. Sens. Actuator B-Chem. 113:599–607CrossRefGoogle Scholar
  75. Sapsford KE, Pons T, Medintz IL and Mattoussi H (2006c) Biosensing with luminescent semiconductor quantum dots. Sensors 6:925–953CrossRefGoogle Scholar
  76. Sapsford KE, Rasooly A, Taitt CR and Ligler FS (2004c) Rapid detection of Campylobacter and Shigella species in food samples using an array biosensor. Anal. Chem. 76:433–440CrossRefGoogle Scholar
  77. Sapsford KE, Shubin YS, Delehanty JB, Golden JP, Taitt CR, Shriver-Lake LC and Ligler FS (2004d) Fluorescence-based array biosensors for detection of biohazards. J. Appl. Microbiol. 96:47–58CrossRefGoogle Scholar
  78. Sapsford KE, Taitt CR, Loo N and Ligler FS (2005) Biosensor detection of botulinum toxoid A and staphylococcal enterotoxin B in food. Appl. Environ. Microbiol. 71:5590–5592CrossRefGoogle Scholar
  79. Scheller F and Schmid RD (1992) Biosensors: Fundamentals, technologies, and applications. VCH Publishers, Inc., New York, NYGoogle Scholar
  80. Shriver-Lake LC, Shubin YS and Ligler FS (2003) Detection of staphylococcal enterotoxin B in spiked food samples. J. Food Prot. 66:1851–1856Google Scholar
  81. Shriver-Lake LC, Turner S and Taitt CR (2007a) Rapid detection of Escherichia coli O157:H7 spiked into food matrices. Anal. Chem. Acta 584:66–71CrossRefGoogle Scholar
  82. Shriver-Lake LC, Erickson JS, Sapsford KE, Ngundi MM, Shaffer KM, Kulagina NV, Hu JE, Gray SA, Golden JP, Ligler FS, Taitt CR (2007b) Blind laboratory trials for multiple pathogens in spiked food matrices. Anal. Letters 40:3219–3231.CrossRefGoogle Scholar
  83. Simpson JM and Lim DV (2005) Rapid PCR confirmation of E. Coli O157:H7 after evanescent wave fiber optic biosensor detection. Biosens. Bioelectron. 21:881–887CrossRefGoogle Scholar
  84. Smith LV, Tamm LK and Ford RM (2002) Explaining non-zero separation distances between attached bacteria and surfaces measured by total internal reflection aqueous fluorescence microscopt. Langmuir 18:5247–5255CrossRefGoogle Scholar
  85. Steingroewer J, Knaus H, Bley T and Boschke E (2005) A rapid method for the pre-enrichment and detection of Salmonella typhimurium by immunomagnetic separation and subsequent fluorescence microscopial techniques. Eng. Life Sci. 5:267–272CrossRefGoogle Scholar
  86. Subramanian A, Irudayaraj J and Ryan T (2006) A mixed self-assembled monolayer-based surface plasmon immunosensor for detection of E. Coli O157:H7. Biosens. Bioelectron. 21:998–1006CrossRefGoogle Scholar
  87. Susmel S, Guilbault GG and O’Sullivan CK (2003) Demonstration of labelless detection of food pathogens using electrochemical redox probe and screen printed gold electrodes. Biosens. Bioelectron. 18:881–889CrossRefGoogle Scholar
  88. Taitt CR, Anderson GP and Ligler FS (2005) Evanescent wave fluorescence biosensors. Biosens. Bioelectron. 20:2470–2487CrossRefGoogle Scholar
  89. Taitt CR, Anderson GP, Lingerfelt BM, Feldstein MJ and Ligler FS (2002) Nine-analyte detection using an array-based biosensor. Anal. Chem. 74:6114–6120CrossRefGoogle Scholar
  90. Taitt CR, Golden JP, Shubin YS, Shriver-Lake LC, Sapsford KE, Rasooly A and Ligler FS (2004a) A portable array biosensor for detecting multiple analytes in complex samples. Microb. Ecol. 47:175–185CrossRefGoogle Scholar
  91. Taitt CR Shubin YS, Angel R and Ligler FS (2004b) Detection of Salmonella enterica serovar typhimurium by using a rapid, array-based immunosensor. Appl. Environ. Microbiol. 70:152–158CrossRefGoogle Scholar
  92. Turner APF, Karub, I and Wilson GS (1987) Biosensors: Fundamentals and applications. Oxford University Press, OxfordGoogle Scholar
  93. Vigeant MA-S, Ford R, Wagner M and Tamm LK (2002) Reversible and irreversible adhesion of motile Escherichia coli cells analyzed by total internal reflection aqueous fluorescence microscopy. Appl. Environ. Microbiol. 68:2794–2801CrossRefGoogle Scholar
  94. Vigeant MA-S, Wagner M, Tamm LK and Ford R (2001) Nanometer distances between swimming bacteria and surfaces measured by total internal reflection aqueous fluorescence microscopy. Langmuir 17:2235–2242CrossRefGoogle Scholar
  95. Wadkins RM, Golden JP, Pritsiolas LM and Ligler FS (1998) Detection of multiple toxic agents using a planar array immunosensor. Biosens. Bioelectron. 13:407–415CrossRefGoogle Scholar
  96. Wellman AD and Sepaniak MJ (2006) Magnetically-assisted transport evanescent field fluoroimmunoassay. Anal. Chem. 78Google Scholar
  97. Wingard Jr LB and Ferrance JP (1991) Concepts, biological components, and scope of biosensors, in Biosensors with Fiberoptics, D. L. Wise and J. L. B. Wingard, Eds., 1–27 Clifton, New Jersey: Humana PressGoogle Scholar
  98. Wise DL and Wingard Jr LB (1991) Biosensors with fiberoptics, Clifton, NJ: Humana PressGoogle Scholar
  99. Wolfbeis OS (1996) Capillary waveguide sensors. Trac-Trends Anal. Chem. 15:225–232Google Scholar
  100. Yang L and Li Y (2006) Simultaneous detection of Escherichia coli O157:H7 and Salmonella typhimurium using quantum dots as fluorescence labels. The Analyst 131:394–401CrossRefGoogle Scholar
  101. Zhao J, Zhu W and He F (2005) Rapidly determining E. coli and P. aeruginosa by an eight channels bulk acoustic wave impedance physical biosensor. Sens. Actuator B-Chem. 107:271–276CrossRefGoogle Scholar
  102. Zhu P, Shelton DR, Karns JS, Sundaram A, Li S, Amstutz P and Tang C-M (2005) Detection of water-borne E. coli O157:H7 using the integrating waveguide biosensor. Biosens. Bioelectron. 21:678–683CrossRefGoogle Scholar
  103. Zourob M, Hawkes JJ, Coakley WT, Treves Brown BJ, Fielden PR, McDonnell M and Goddard NJ (2005a) Optical leaky waveguide sensor for detection of bacteria with ultrasound attractor force. Anal. Chem. 77:6163–6168CrossRefGoogle Scholar
  104. Zourob M, Mohr S, Treves Brown BJ, Fielden PR, McDonnell M and Goddard NJ (2003) The development of a metal clad leaky waveguide sensor for the detection of particles. Sens. Actuator B-Chem. 90:296–307CrossRefGoogle Scholar
  105. Zourob M, Mohr S, Treves Brown BJ, Fielden PR, McDonnell M and Goddard NJ (2005b) Bacteria detection using disposable optical leaky waveguide sensors. Biosens. Bioelectron. 21:293–302CrossRefGoogle Scholar
  106. Zourob M, Mohr S, Treves Brown BJ, Fielden PR, McDonnell M and Goddard NJ (2005c). An integrated metal clad leaky waveguide sensor for detection of bacteria. Anal. Chem. 77:232–242CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Kim E. Sapsford
    • 1
    • 2
  • Lisa C. Shriver-Lake
    • 2
  1. 1.George Mason University10910 University Blvd MS 4E3ManassasUSA
  2. 2.Center for Bio/Molecular Science and Engineering Code 6900U.S. Naval Research LaboratoryWashingtonUSA

Personalised recommendations