Recent Advances in Real-time Mass Spectrometry Detection of Bacteria

  • Arjan L. van Wuijckhuijse
  • Ben L.M. van Baar


The analysis of bio-aerosols poses a technology challenge, particularly when sampling and analysis are done in situ. Mass spectrometry laboratory technology has been modified to achieve quick bacteria typing of aerosols in the field. Initially, aerosol material was collected and subjected off-line to minimum sample treatment and mass spectrometry analysis. More recently, sampling and analysis were combined in a single process for the real-time analysis of bio-aerosols in the field. This chapter discusses the development of technology for the mass spectrometry of bio-aerosols, with a focus on bacteria aerosols. Merits and drawbacks of the various technologies and their typing signatures are discussed. The chapter concludes with a brief view of future developments in bio-aerosol mass spectrometry.


Aerosol Particle Dipicolinic Acid Bacterium Typing Bacillus Spore Mass Spectrometry Technology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abel K, DeSchmertzing H and Peterson JI (1963) Classification of Microorganisms by Analysis of Chemical Composition .1. Feasibility of Utilizing GC. J. Bacteriol. 85:1039–1044Google Scholar
  2. Agarwal JK and Sem GJ (1980) Continuous Flow, Single-particle-counting Condensation Nucleus Counter. J. Aerosol Sci. 11:343–357CrossRefGoogle Scholar
  3. Al Dahouk S, Nöckler K, Scholz HC, Tomaso H, Bogumil R and Neubauer H (2006) Immunoproteomic Characterization of Brucella abortus 1119–3 Preparations used for the Serodiagnosis of Brucella Infections. J. Immunol. Meth. 309:34–47CrossRefGoogle Scholar
  4. Altelaar AFM, Van Minnen J, Jimenez CR, Heeren RMA and Piersma SR (2005) Direct Molecular Imaging of Lymnaea stagnalis Nervous Tissue at Subcellular Spatial Resolution by Mass Spectrometry. Anal. Chem. 77:735–741CrossRefGoogle Scholar
  5. Anderson CW and Carlson MA (1999) A Time-of-Flight Mini-Mass Spectrometer: Aerosol Collection, Capture, and Load-Lock System. Johns Hopkins APL Tech. Dig. 20:352–362Google Scholar
  6. Anderson CW, Scholl PF, Chappell RG, Bryden WA, Ko HW and Ecelberger SA (2003) Sample Collection Preparation for Time-of-flight Miniature Mass Spectrometer. US Patent 5,806,465Google Scholar
  7. Antoine MD, Carlson MA, Drummond WR, Doss III OW, Hayek CS, Saksena A and Lin JS (2004) Mass Spectral Analysis of Biological Agents Using the BioTOF Mass Spectrometer. Johns Hopkins APL Tech. Dig. 25:20–26Google Scholar
  8. Arnold RJ and Reilly JP (1998) Fingerprint matching of e. coli strains with matrix-assisted laser desorption ionization time-of-flight mass spectrometry of whole cells using a modified correlation approach. Rapid. Commun. Mass Spectrom. 12:630–636CrossRefGoogle Scholar
  9. Arnold RJ, Karty JA, Ellington AD and Reilly JP (1999) Monitoring the Growth of a Bacteria Culture by MALDI MS of Whole Cells. Anal. Chem. 71:1990–1996CrossRefGoogle Scholar
  10. Badman ER and Cooks RG (2000) Miniature Mass Analyzers. J. Mass Spectrom. 35:659–671CrossRefGoogle Scholar
  11. Balasanmugam K, Dang TA, Day RJ, and Hercules DM (1981) Some Cation and Anion Attachment Reactions in Laser Desorption Mass Spectrometry. Anal. Chem. 53:2296–2298CrossRefGoogle Scholar
  12. Balasanmugam K, Viswanadham SK and Hercules D (1986) Characterization of Polycyclic Aromatic Hydrocarbons by Laser Mass Spectrometry. Anal. Chem. 58:1102–1108CrossRefGoogle Scholar
  13. Barshick SA, Wolf DA and Vass AA (1999) Differentiation of Microorganisms Based on Pyrolysis – Ion Trap Mass Spectrometry Using Chemical Ionization. Anal. Chem. 71:633–641CrossRefGoogle Scholar
  14. Basile F, Beverly MB, Abbas-Hawks C, Mowry CD, Voorhees KJ and Hadfield TL (1998) Direct Mass Spectrometric Analysis of In Situ Thermally Hydrolyzed and Methylated Lipids from Whole Bacterial Cells. Anal. Chem. 70:1555–1562CrossRefGoogle Scholar
  15. Beeson MD, Murray KK and Russell DH (1995) Aerosol Matrix-Assisted Laser Desorption Ionization: Effects of Analyte Concentration and Matrix-to-Analyte Ratio. Anal. Chem. 67:1981–1986CrossRefGoogle Scholar
  16. Beverly MB, Basile F, Voorhees KJ and Hadfield TL (1996) A Rapid Approach for the Detection of Dipicolinic Acid in Bacterial Spores Using Pyrolysis/Mass Spectrometry. Rapid. Commun. Mass Spectrom. 10:455–458CrossRefGoogle Scholar
  17. Böhm R, Kapr T, Schmitt HU, Albrecht J and Wieser P (1985) Application of the Laser Microprobe Mass Analyser (LAMMA) to the Differentiation of Single Bacterial Cells. J. Anal. Appl. Pyrol. 8:449–461CrossRefGoogle Scholar
  18. Brockman AH and Orlando R (1995). Probe-immobilized Affinity Chromatography/Mass Spectrometry. Anal. Chem. 67:4581–4585CrossRefGoogle Scholar
  19. Bruynseels F and Van Grieken RE (1984) Laser Microprobe Mass Spectrometric Identification of Sulfur Species in Single Micrometer-size Particles. Anal. Chem. 56:871–873CrossRefGoogle Scholar
  20. Bruynseels F, Storms H, Van Grieken R and Van der Auwera L (1988) Characterization of North Sea Aerosols by Individual Particle Analysis. Atmosph. Environm. 22:2593–2602Google Scholar
  21. Bryden WA, Benson RC, Ecelberger SA, Phillips TE, Cotter RJ and Fenselau C (1995) The Tiny-TOF Mass-Spectrometer for Chemical and Biological Sensing. Johns Hopkins APL Tech. Dig. 16:296–310Google Scholar
  22. Bundy J and Fenselau C (1999) Lectin-based Affinity Capture for MALDI-MS Analysis of Bacteria., Anal. Chem. 71:1460–1463Google Scholar
  23. Caputo E, Moharram R and Martin BM (2003) Methods for On-chip Protein Analysis. Anal. Biochem. 321:116–124CrossRefGoogle Scholar
  24. Carson PG, Neubauer KR, Johnston MV and Wexler AS (1995) On-line Chemical Analysis of Single Aerosol Particles by Rapid Single-particle Mass Spectrometry. J. Aeros. Sci. 26:535–545CrossRefGoogle Scholar
  25. Claydon MA, Davey SN, Edwards-Jones V and Gordon DB (1996) The Rapid Identification of Intact Microorganisms Using Mass Spectrometry. Nat. Biotechnol. 14:1584–1586CrossRefGoogle Scholar
  26. Cornish TJ and Cotter RJ (1992) A Compact TOF-MS for the Structural Analysis of Biological Molecules Using Laser Desorption. Rapid Comm. Mass Spectrom. 6:242–248CrossRefGoogle Scholar
  27. Cornish TJ and Cotter RJ (1997) High-order Kinetic Energy Focusing in an End Cap Reflectron Time-of-flight Mass Spectrometer. Anal. Chem. 69:4615–4618CrossRefGoogle Scholar
  28. Cornish TJ, Ecelberger S and Brinckerhoff W (2000) Miniature Time-of-flight Mass Spectrometer Using a Flexible Circuitboard Reflector. Rapid Commun. Mass Spectrom. 14:2408–2411CrossRefGoogle Scholar
  29. Cotter RJ (1980) Laser Desorption Chemical Ionization Mass Spectrometry. Anal. Chem. 52:1767–1770CrossRefGoogle Scholar
  30. Cotter RJ (1981) Cationized Species in Laser Desorption Mass Spectrometry. Anal. Chem. 53:719–720CrossRefGoogle Scholar
  31. Dai Y, Whittal RM and Li L (1996) Confocal Fluorescence Microscopic Imaging for Investigating the Analyte Distribution in MALDI Matrices. Anal. Chem. 68:2494–2500CrossRefGoogle Scholar
  32. Dale JM, Yang M, Whitten WB and Ramsey JM (1994) Chemical Characterization of Single Particles by Laser Ablation/Desorption in a Quadrupole Ion-Trap Mass-Spectrometer. Anal. Chem. 66:3431–3435CrossRefGoogle Scholar
  33. DeLuca S, Sarver EW, Harrington PD and Voorhees KJ (1990) Direct Analysis of Bacterial Fatty Acids by Curie-point Pyrolysis Tandem Mass Spectrometry. Anal. Chem. 62:1465–1472CrossRefGoogle Scholar
  34. DeLuca SJ, Sarver EW and Voorhees KJ (1992) Direct Analysis of Bacterial Glycerides by Curie-point Pyrolysis - Mass Spectrometry. J. Anal. Appl. Pyrolysis 23:1–14CrossRefGoogle Scholar
  35. Demirev PA, Ho YP, Ryzhov V and Fenselau C (1999) Micro-organism Identification by Mass Spectrometry and Protein Database Searches., Anal. Chem. 71:2732–2738CrossRefGoogle Scholar
  36. Demirev PA, Lin JS, Pineda FJ and Fenselau C (2001) Bioinformatics and Mass Spectrometry for Micro-organism Identification: Proteome-wide Post-translational Modifications and Database Search Algorithms for Characterization of Intact H. pylori. Anal. Chem. 73:4566–4573CrossRefGoogle Scholar
  37. Dickinson DN, La Duc MT, Haskins WE, Gornushkin I, Winefordner JD, Powell DH and Venkateswaran K (2004) Species Differentiation of a Diverse Suite of Bacillus Spores by Mass Spectrometry-Based Protein Profiling. Appl. Envir. Microbiol. 70:475–482CrossRefGoogle Scholar
  38. Dierck I, Michaud D, Wouters L and Van Grieken R (1992) Laser Microprobe Mass Analysis of Individual North Sea Aerosol Particles. Environ. Sci. Technol. 26:802–808CrossRefGoogle Scholar
  39. Ecelberger SA, Cornish TJ, Collins BF, Lewis DL and Bryden WA (2004) Suitcase TOF: A Man-Portable Time-of-Flight Mass Spectrometer. Johns Hopkins APL Tech. Dig. 25:14–19Google Scholar
  40. Engwegen JYMN, Gast M-CW, Schellens JHM and Beijnen JH (2006) Clinical Proteomics: Searching for Better Tumour Markers with SELDI-TOF Mass Spectrometry. Tr. Pharmacol. Sci. 27:251–259CrossRefGoogle Scholar
  41. Evans MD, Hanold KA and Syage JA (2000) Rapid Response Chem/Bio Detection System Based on Photoionization Mass Spectrometry. Proc. 1st Joint Conf. for CB Defense, Oct 23–27, Williamsburg, VirginiaGoogle Scholar
  42. Evason DJ, Claydon MA and Gordon DB (2001) Exploring the Limits of Bacterial Identification by Intact Cell – Mass Spectrometry. J. Am. Soc. Mass Spectrom. 12:49–54CrossRefGoogle Scholar
  43. Fancher CA, Woods AS and Cotter RJ (2000) Improving the Sensitivity of the End-cap Reflectron Time-of-flight Mass Spectrometer. J. Mass Spectrom. 35:157–162CrossRefGoogle Scholar
  44. Fenselau C and Demirev PA (2001) Characterization of Intact Microorganisms by MALDI Mass Spectrometry. Mass Spectrom. Rev. 20:157–171CrossRefGoogle Scholar
  45. Fergenson DP, Pitesky ME, Tobias HJ, Steele PT, Czerwieniec GA, Russell SC, Lebrilla C, Horn J, Coffee K, Srivastava A, Pillai SP, Shih M-TP, Hall HL, Ramponi AJ, Chang JT, Langlois RG, Estacio PL, Hadley RT, Frank M and Gard E (2004) Reagentless Detection and Classification of Individual Bioaerosol Particles in Seconds. Anal. Chem. 76:373–378CrossRefGoogle Scholar
  46. Foret F and Preisler J (2002) Liquid Phase Interfacing and Miniaturization in Matrix-Assisted Laser Desorption / Ionization Mass Spectrometry. Proteomics 2:360–372CrossRefGoogle Scholar
  47. Fox A (2006) Mass Spectrometry for Species or Strain Identification After Culture or Without Culture: Past, Present, and Future. J. Clin. Microbiol. 44:2677–2680CrossRefGoogle Scholar
  48. Freeman R, Sisson PR and Ward AC (1995) Resolution of Batch Variations in Pyrolysis Mass Spectrometry of Bacteria by the Use of Artificial Neural Network Analysis. Antonie Van Leeuwenhoek 68:253–260CrossRefGoogle Scholar
  49. Gao L, Song Q, Patterson GE, Cooks RG and Ouyang Z (2006) Handheld Rectilinear Ion Trap Mass Spectrometer. Anal. Chem. 78:5994–6002CrossRefGoogle Scholar
  50. Gard E, Mayer JE, Morrical BD, Dienes T, Fergenson DP and Prather KA (1997) Real-time Analysis of Individual Atmospheric Aerosol Particles: Design and Performance of a Portable ATOFMS. Anal. Chem. 69:4083–4091CrossRefGoogle Scholar
  51. Gardner B. D., Donaldson, W., Chun, R., Lee, W. T., Tissandier, M. 2005. An Ion Trap Mass Spectrometer System for Continuous Monitoring of Biological and Chemical Backgrounds. Proc. 5th Harsh-Environment Mass Spectrometry Workshop, September 20–23, Sarasota, FloridaGoogle Scholar
  52. Gelpí E (2002) Interfaces for Coupled Liquid-Phase Separation / Mass Spectrometry Techniques. An Update on Recent Developments. J. Mass Spectrom. 37:241–253CrossRefGoogle Scholar
  53. Glass K and Becker NG (2006) Evaluation of Measures to Reduce International Spread of SARS. Epidemiol. Infect. 134:1092–1101CrossRefGoogle Scholar
  54. Goodacre R, Shann B, Gilbert RJ, Timmins EM, McGovern AC, Alsberg BK, Kell DB and Logan NA (2000) Detection of the Dipicolinic Acid Biomarker in Bacillus Spores Using Curie-point Pyrolysis Mass Spectrometry and Fourier Transform Infrared Spectroscopy. Anal. Chem. 72, 119–127CrossRefGoogle Scholar
  55. Griest WH, Wise MB, Hart KJ, Lammert SA, Thompson CV and Vass AA (2001) Biological Agent Detection and Identification by the Block II Chemical Biological Mass Spectrometer. Field Analyt. Chem. Technol. 5:177–184CrossRefGoogle Scholar
  56. Hamburg MA (2002) Bioterrorism: Responding to an Emerging Threat. Trends Biotechnol. 20:296–298CrossRefGoogle Scholar
  57. Hara K, Kikuchi T, Furuya K, Hayashi M and Fujii Y (1996) Characterization of Antarctic Aerosol Particles Using Laser Microprobe Mass Spectrometry. Environ. Sci. Technol. 30:385–391CrossRefGoogle Scholar
  58. Harris WA, Reilly PTA and Whitten WB (2006) Aerosol MALDI of Peptides and Proteins in an Ion Trap Mass Spectrometer: Trapping, Resolution and Signal-to-noise. Int. J. Mass Spectrom. 258:113–119CrossRefGoogle Scholar
  59. Hart KJ, Harmon SH, Wolf DA, Vass AA and Wise MB (1999) Detection of Chemical/Biological Agents and Simulants Using Quadrupole Ion Trap Mass Spectrometry. Proceedings of the 47th ASMS Conf. Mass Spectrom. All. Topics, June 13–17, Dallas, TXGoogle Scholar
  60. Hart KJ, Wise MB, Griest WH and Lammert SA (2000) Design, Development and Performance of a Fieldable Chemical and Biological Agent Detector. Field Anal. Chem. Technol. 4:93–110CrossRefGoogle Scholar
  61. Hathout Y, Demirev PA, Ho Y-P, Bundy JL, Ryzhov V, Sapp L, Stutler J, Jackman J and Fenselau C (1999) Identification of Bacillus Spores by Matrix-assisted Laser Desorption Ionization – Mass Spectrometry. Appl. Environ. Microbiol. 65:4313–4319Google Scholar
  62. Hathout Y, Setlow B, Cabrera-Martinez R-M, Fenselau C and Setlow P (2003) Small, Acid-Soluble Proteins as Biomarkers in Mass Spectrometry Analysis of Bacillus Spores. Appl. Envir. Microbiol. 69:1100–1107CrossRefGoogle Scholar
  63. He L and Murray KK (1999) 337 nm Matrix-Assisted Laser Desorption / Ionization of Single Aerosol Particles. J. Mass Spectrom. 34:909–914CrossRefGoogle Scholar
  64. Heller DN, Fenselau C, Cotter RJ, Demirev P, Olthoff JK, Honovich J, Uy M, Tanaka T and Kishimoto Y (1987) Mass Spectral Analysis of Complex Lipids Desorbed Directly from Lyophilized Membranes and Cells. Biochem. Biophys. Res. Commun. 142:194–199CrossRefGoogle Scholar
  65. Hillenkamp F, Unsöld E, Kaufmann R and Nitsche R (1975) A High Sensitivity Laser Microprobe Mass Analyzer. Appl. Phys. 8:341–348.CrossRefGoogle Scholar
  66. Hinz KP, Kaufmann R and Spengler B (1994) Laser-Induced Mass Analysis of Single Particles in the Airborne State. Anal. Chem. 66:2071–2076CrossRefGoogle Scholar
  67. Holland RD, Wilkes JG, Rafii F, Sutherland JB, Persons CC, Voorhees KJ and Lay JO (1996) Rapid Identification of Intact Whole Bacteria Based on Spectral Patterns Using Matrix Assisted Laser Desorption / Ionization with Time-of-flight Mass Spectrometry. Rapid. Commun. Mass. Spectrom. 10:1227–1232CrossRefGoogle Scholar
  68. Holland RD, Rafii F, Heinze TM, Sutherland JB, Voorhees KJ and Lay Jr. JO (2000) Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometric Detection of Bacterial Biomarker Proteins Isolated from Contaminated Water, Lettuce and Cotton Cloth. Rapid. Commun. Mass. Spectrom. 14:911–917CrossRefGoogle Scholar
  69. Holle A, Haase A, Kayser M and Höhndorf J (2006) Optimizing UV Laser Focus Profiles for Improved MALDI Performance. J. Mass Spectrom. 41:705–716CrossRefGoogle Scholar
  70. Hutchens TW and Yip TT (1993) New Desorption Strategies for the Mass Spectrometric Analysis of Macromolecules. Rapid Commun. Mass Spectrom. 7:576–580CrossRefGoogle Scholar
  71. Jackson SN, Mishra S and Murray KK (2004) On-line Laser Desorption/Ionization Mass Spectrometry of Matrix-coated Aerosols. Rapid Comm. Mass Spectrom. 18:2041–2045CrossRefGoogle Scholar
  72. Jarman KH, Daly DS, Petersen CE, Saenz AJ, Valentine NB and Wahl KL (1999) Extracting and Visualizing Matrix-assisted Laser Desorption/Ionization Time-of-flight Mass Spectral Fingerprints. Rapid. Commun. Mass. Spectrom. 13:1586–1594CrossRefGoogle Scholar
  73. Jarman KH, Cebula ST, Saenz AJ, Petersen CE, Valentine NB, Kingsley MT and Wahl KL (2000) An Algorithm for Automated Bacterial Identification Using Matrix-assisted Laser Desorption/Ionization Mass Spectrometry. Anal. Chem. 72:1217–1223CrossRefGoogle Scholar
  74. Jimenez JL, Jayne JT, Shi Q, Kolb CE, Worsnop DR, Yourshaw I, Seinfeld JH, Flagan RC, Zhang X, Smith KA, Morris JW and Davidovits P (2003) Ambient Aerosol Sampling Using the Aerodyne Aerosol Mass Spectrometer. J. Geophys. Res. 108:8425 (DOI: 10.1029/2001JD001213)CrossRefGoogle Scholar
  75. Jones JJ, Wilkins CL, Cai Y, Beitle RR, Liyanage, R., and Lay Jr., J. O. 2005 Real-time Monitoring of Recombinant Bacterial Proteins by Mass Spectrometry. Biotechnol. Prog. 21:1754–1758.Google Scholar
  76. Karas M and Hillenkamp F (1988) Laser Desorption Ionization of Proteins with Molecular Masses Exceeding 10,000 Daltons. Anal Chem. 60:2299–2301CrossRefGoogle Scholar
  77. Karas M and Krüger R (2003) Ion Formation in MALDI: The Cluster Ionization Mechanism., Chem. Rev. 103:427–439Google Scholar
  78. Kaufmann R, Hillenkamp F and Wechsung R (1979) The Laser Microprobe Mass Analyzer (LAMMA): A New Instrument for Biomedical Microprobe Analysis. Med. Prog. Technol. 6:109–121Google Scholar
  79. Keys CJ, Dare DJ, Sutton H, Wells G, Lunt M, McKenna T, McDowall M and Shah HN (2004) Compilation of a MALDI-TOF Mass Spectral Database for the Rapid Screening and Characterisation of Bacteria Implicated in Human Infectious Diseases. Infect. Genet. Evol. 4:221–242CrossRefGoogle Scholar
  80. Kievit O, Marijnissen JCM, Verheijen PJT and Scarlett B (1992) On-line Measurement of Particle Size and Composition. J. Aerosol Sci. 23, Suppl. 1:301–304CrossRefGoogle Scholar
  81. Kievit O, Weiss M, Verheijen PJT, Marijnissen JCM and Scarlett B (1996) The On-line Chemical Analysis of Single Particles Using Aerosol Beams and Time of Flight Mass Spectrometry. Chem. Eng. Commun. 151:79–100CrossRefGoogle Scholar
  82. Knochenmuss R and Zenobi R (2003) MALDI Ionization: The Role of In-plume Processes., Chem. Rev. 103:441–452Google Scholar
  83. Krebs MD, Mansfield B, Yip P, Cohen SJ, Sonenshein AL, Hitt BA and Davis CE (2006) Novel Technology for Rapid Species-specific Detection of Bacillus Spores. Biomol. Eng. 23:119–127CrossRefGoogle Scholar
  84. Krishnamurthy T and Ross PL (1996) Rapid Identification of Bacteria by Direct Matrix-assisted Laser Desorption/Ionization Mass Spectrometric Analysis of Whole Cells. Rapid Commun. Mass Spectrom. 10:1992–1996CrossRefGoogle Scholar
  85. Kussman M, Nordhof E, Rahbek-Nielsen H, Haebel S, Rossel-Larsen M, Jakobsen L, Gobom J, Mirgorodskaya E, Kroll-Kristensen A, Palm L and Roepstorff P (1997) Matrix-assisted Laser Desorption / Ionization Mass Spectrometry Sample Preparation Techniques Designed for Various Peptide and Protein Analytes. J. Mass Spectrom. 32:593–601CrossRefGoogle Scholar
  86. Kyne L, Merry C, O’Connell B, Harrington P, Keane C and O’Neill D (1998) Simultaneous Outbreaks of Two Strains of Toxigenic Clostridium difficile in a General Hospital. J. Hosp. Infect. 38:101–112CrossRefGoogle Scholar
  87. Lammert SA, Griest WH, Wise MB, Hart KJ, Vass AA, Wolf DA, Burnett MN, Merriweather R and Smith RR (2002) A Mass Spectrometer-based System for Integrated Chemical and Biological Agent Detection – The Block II CBMS. Proceedings of the 50th ASMS Conf. Mass Spectrom. All. Topics, June 2–6, Orlando, FloridaGoogle Scholar
  88. Lay Jr. JO (2000) MALDI-TOF Mass Spectrometry and Bacterial Taxonomy. Tr. Anal. Chem. 19:507–516CrossRefGoogle Scholar
  89. Lay Jr. JO (2001) MALDI-TOF Mass Spectrometry of Bacteria. Mass Spectrom. Rev. 20: 172–194CrossRefGoogle Scholar
  90. Liang XL, Lubman DM, Rossi DT, Nordblom GD and Barksdale CM (1998) On-probe Immunoaffinity Extraction by Matrix-assisted Laser Desorption/Ionization Mass Spectrometry. Anal. Chem. 70:498–503CrossRefGoogle Scholar
  91. Lok JJ (2007) Dutch Detector Promises Swift BW Analysis. Jane’s Int. Def. Rev. 40:4Google Scholar
  92. Luo S, Mohr J, Sickenberger D and Hryncewich A (1999) Study of Purified Bacteria and Viruses by Pyrolysis Mass Spectrometry. Field Analyt. Chem. Technol. 3:357–374CrossRefGoogle Scholar
  93. Luxembourg SL, McDonnell LA, Duursma M, Guo X and Heeren RMA (2003) Effect of Local Matrix Crystal Variations in Matrix-Assisted Ionization Techniques for Mass Spectrometry. Anal. Chem. 75:2333–2341CrossRefGoogle Scholar
  94. Macha SF and Limbach PA (2002) Matrix-assisted Laser Desorption/Ionization (MALDI) Mass Spectrometry of Polymers. Curr. Opin. Sol. State Mat. Sci. 6:213–220CrossRefGoogle Scholar
  95. Maier T, Groβe-Herrenthey A, Krueger M, Kelly J and Kostrzewa M (2006) Automated Microorganism Identification Using a Database Software System and a High Quality MALDI-TOF Spectra Library. Proceedings of the 17th Int. Mass Spectrom. Conf., 27 Aug.–1 Sept., Prague, Czech RepublicGoogle Scholar
  96. Mandrell RE, Harden LA, Bates A, Miller WG, Haddon WF and Fagerquist CK (2005) Speciation of Campylobacter coli, C. jejuni, C. helveticus, C. lari, C. sputorum, and C. upsaliensis by Matrix-assisted Laser Desorption Ionization - Time of Flight Mass Spectrometry. Appl. Environ. Microbiol. 71:6292–6307CrossRefGoogle Scholar
  97. Mansoori BA, Johnston MV and Wexler AS (1996) Matrix-Assisted Laser Desorption/Ionization of Size- and Composition Selected Aerosol Particles. Anal. Chem. 68:3595–3601CrossRefGoogle Scholar
  98. Marijnissen J, Scarlett B and Verheijen P (1988) Proposed On-line Aerosol Analysis Combining Size Determination, Laser-induced Fragmentation and Time-of-flight Mass Spectroscopy. J. Aerosol Sci. 19:1307–1310CrossRefGoogle Scholar
  99. Marvin LF, Roberts MA and Fay LB (2003) Matrix-assisted Laser Desorption/Ionization Time-of-flight Mass Spectrometry in Clinical Chemistry. Clin. Chim. Acta 337:11–21CrossRefGoogle Scholar
  100. McCracken D, Flanagan P, Hill D and Hosein I (2000) Cluster of Cases of Mycobacterium chelonae Bacteraemia. Eur. J. Clin. Microbiol. Infect. Dis. 19:43–46CrossRefGoogle Scholar
  101. McKeown PJ, Johnston MV and Murphy DM (1991) Online Single-particle Analysis by Laser Desorption Mass-Spectrometry. Anal. Chem. 63:2069–2073CrossRefGoogle Scholar
  102. Meuzelaar HLC and Kistemaker PG (1973) A Technique for Fast and Reproducible Fingerprinting of Bacteria by Pyrolysis Mass Spectrometry. Anal. Chem. 45:587–590CrossRefGoogle Scholar
  103. Miliotis T, Kjellstrom S, Nilsson J, Laurell T, Edholm LE and Marko-Varga G (2000) Capillary Liquid Chromatography Interfaced to Matrix-Assisted Laser Desorption-Ionization Time-of-Flight Mass Spectrometry Using an On-Line Coupled Piezoelectric Flow-through Microdispenser. J. Mass Spectrom. 35:369–377CrossRefGoogle Scholar
  104. Moss CW (1990) Use of Cellular Fatty Acids for Identification of Microorganisms. In: Fox A, Morgan LS, Larsson L and Odham G (eds) Analytical Microbiology Methods: Chromatography and Mass Spectrometry. Plenum Press, New York, pp 59–69Google Scholar
  105. Murphy DM (2006) The Design of Single Particle Laser Mass Spectrometers., Mass Spectrom. Rev. 26:150–165Google Scholar
  106. Murray KK, Lewis TM, Beeson MD and Russell DH (1996) Aerosol Matrix-Assisted Laser-Desorption Ionization for Liquid-Chromatography Time-of-Flight Mass-Spectrometry. Anal. Chem. 66:1601–1609CrossRefGoogle Scholar
  107. Nielen MWF (1999) MALDI Time-of-flight Mass Spectrometry of Synthetic Polymers. Mass Spectrom. Rev. 18:309–344CrossRefGoogle Scholar
  108. Nies BJ, Evans MD and Syage JA (2003) Rapid Biological Weapons Monitoring by Pyrolysis/GC, Photoionization MS., PITTCON, March 9–14, Orlando, FloridaGoogle Scholar
  109. Nilsson CL (1999) Fingerprinting of Helicobacter pylori Strains by Matrix-assisted Laser Desorption/Ionization Mass Spectrometric Analysis. Rapid Commun. Mass Spectrom. 13:1067–1071CrossRefGoogle Scholar
  110. Noble CA and Prather KA (2000) Real-time Single Particle Mass Spectrometry: A Historical Review of a Quarter Century of the Chemical Analysis of Aerosols. Mass Spectrom. Rev. 19:248–274CrossRefGoogle Scholar
  111. Oyama VI (1963) Mars Biological Analysis by Gas Chromatography. Lunar Planetary Expl. Coll. Proc. 3:29–36Google Scholar
  112. Perdue ML and Swayne DE (2005) Public Health Risk from Avian Influenza Viruses. Avian Dis. 49:317–327CrossRefGoogle Scholar
  113. Pineda FJ, Lin JS, Fenselau C and Demirev PA (2000) Testing the Significance of Micro-organism Identification by Mass Spectrometry and Proteome Database Search. Anal. Chem. 72:3739–3744CrossRefGoogle Scholar
  114. Pineda FJ, Antoine MD, Demirev PA, Feldman AB, Jackman J, Longenecker M and Lin JS (2003) Micro-organism Identification by Matrix-Assisted Laser/Desorption Ionization Mass Spectrometry and Model-Derived Ribosomal Protein Biomarkers. Anal. Chem. 75:3817–3822CrossRefGoogle Scholar
  115. Poerschmann J, Parsi Z, Gorecki T and Augustin J (2005) Characterization of Non-discriminating Tetramethylammonium Hydroxide – Induced Thermochemolysis – Capillary Gas Chromatography – Mass Spectrometry as a Method for Profiling Fatty Acids in Bacterial Biomasses. J. Chromatogr. A. 1071:99–109CrossRefGoogle Scholar
  116. Posthumus MA, Kistemaker PG, Meuzelaar HLC and Ten Noever de Brauw MC (1978) Laser Desorption-Mass Spectrometry of Polar Nonvolatile Bio-organic Molecules. Anal. Chem. 50:985–991Google Scholar
  117. Prasad S, Schmidt H, Lampen P, Wang M, Güth R, Rao JV, Smith GB and Eiceman GA (2006) Analysis of Bacterial Strains with Pyrolysis - Gas Chromatography / Differential Mobility Spectrometry. Analyst 131:1216–1225CrossRefGoogle Scholar
  118. Prather KA, Nordmeyer T and Salt K (1994) Real-time Characterization of Individual Aerosol-Particles Using Time-of-Flight Mass-Spectrometry. Anal. Chem. 66:1403–1407CrossRefGoogle Scholar
  119. Preisler J, Foret F and Karger BL (1998) On-Line MALDI-TOF MS Using a Continuous Vacuum Deposition Interface. Anal. Chem. 70:5278–5287CrossRefGoogle Scholar
  120. Reiner E (1965) Identification of Bacterial Strains by Pyrolysis Gas-liquid Chromatography. Nature (London) 206:1272–1274CrossRefGoogle Scholar
  121. Saenz AJ, Petersen CE, Valentine NB, Gantt SL, Jarman KH, Kingsley M and Wahl KL (2001) Reproducibility of Matrix Assisted Laser Desorption/Ionization Time-of-flight Mass Spectrometry for Replicate Bacterial Culture Analysis. Rapid Commun. Mass Spectrom. 13:1580–1585CrossRefGoogle Scholar
  122. Schmid O, Ball G, Lancashire L, Culak R and Shah H (2005) New Approaches to Identification of Bacterial Pathogens by Surface Enhanced Laser Desorption/Ionization Time of Flight Mass Spectrometry in Concert with Artificial Neural Networks, with Special Reference to Neisseria gonorrhoeae. J. Med. Microbiol. 54:1205–1211CrossRefGoogle Scholar
  123. Schulten HR, Beckey HD, Meuzelaar HLC and Boerboom AJH (1973) High Resolution Field Ionization of Bacterial Pyrolysis Products Anal. Chem. 45:191–195Google Scholar
  124. Schwartz SA, Reyzer ML and Caprioli RM (2003) Direct Tissue Analysis Using Matrix-assisted Laser Desorption/Ionization Mass Spectrometry: Practical Aspects of Sample Preparation. J. Mass Spectrom. 38:699–708CrossRefGoogle Scholar
  125. Seydel U, Lindner B, Seydel JK and Brandenburt K (1982) Detection of Externally Induced Impairments in Single Bacterial Cells by Laser Microbe Mass Analysis. Int. J. Lepr. Other Mycobact. Dis. 50:90–95Google Scholar
  126. Seydel U and Lindner B (1988) Monitoring of Bacterial Drug Response by Mass Spectrometry of Single Cells. Biomed. Environ. Mass Spectrom. 16:457–459CrossRefGoogle Scholar
  127. Shute LA, Gutteridge CS, Norris JR and Berkeley RC (1984) Curie-point Pyrolysis Mass Spectrometry Applied to Characterization and Identification of Selected Bacillus Species. J. Gen. Microbiol. 130:343–355Google Scholar
  128. Simmonds PG, Shulman GP and Stembridge CH (1969) Organic Analysis by Pyrolysis – Gas Chromatography Mass Spectrometry: A Candidate Experiment for the Biological Exploration of Mars J. Chromatogr. Sci. 7:36–41Google Scholar
  129. Simmonds PG (1970) Whole Micro-organisms Studied by Pyrolysis Gas Chromatography – Mass Spectrometry: Significance for Extraterrestial Life Detection Experiments Appl. Microbiol. 20:567–572Google Scholar
  130. Sinha MP (1984) Laser-Induced Volatilization and Ionization of Microparticles. Rev. Sci. Instrum. 55:886–891CrossRefGoogle Scholar
  131. Sinha MP, Platz RM, Friedlander SK and Vilker VL (1985) Characterization of Bacteria by Particle Beam Mass Spectrometry. Appl. Environ. Microbiol. 49:1366–1373Google Scholar
  132. Snyder AP, Dworzanski JP, Tripathi A, Maswadeh WM and Wick CH (2004) Correlation of Mass Spectrometry Identified Bacterial Biomarkers from a Fielded Pyrolysis – Gas Chromatography – Ion Mobility Spectrometry Biodetector with the Microbiological Gram Stain Classification Scheme. Anal. Chem. 76:6492–6499CrossRefGoogle Scholar
  133. Song Y, Wu G, Song Q, Cooks RG, Ouyang Z and Plass WR (2006) Novel Linear Ion Trap Mass Analyzer Composed of Four Planar Electrodes. J. Am. Soc. Mass Spectrom. 17:631–639CrossRefGoogle Scholar
  134. Spiegelman D, Whissell G and Greer CW (2005) A Survey of the Methods for the Characterization of Microbial Consortia and Communities. Can. J. Microbiol. 51:355–386CrossRefGoogle Scholar
  135. Srivastava A, Pitesky ME, Steele PT, Tobias HJ, Fergenson DP, Horn JM, Russell SC, Czerwieniec GA, Lebrilla CB, Gard EE and Frank M (2005) Comprehensive Assignment of Mass Spectral Signatures from Individual Bacillus atrophaeus Spores in Matrix-Free Laser Desorption/Ionization Bioaerosol Mass Spectrometry. Anal. Chem. 77:3315–3323CrossRefGoogle Scholar
  136. Steele PT, Tobias HJ, Fergenson DP, Pitesky ME, Horn JM, Czerwieniec GA, Russell SC, Lebrilla CB, Gard EE and Frank M (2003) Laser Power Dependence of Mass Spectral Signatures from Individual Bacterial Spores in Bioaerosol Mass Spectrometry. Anal. Chem. 75:5480–5487CrossRefGoogle Scholar
  137. Steele PT, Srivastava A, Pitesky ME, Fergenson DP, Tobias HJ, Gard EE and Frank M (2005) Desorption/Ionization Fluence Thresholds and Improved Mass Spectral Consistency Measured Using a Flattop Laser Profile in the Bioaerosol Mass Spectrometry of Single Bacillus Endospores. Anal. Chem. 77:7448–7454CrossRefGoogle Scholar
  138. Stern NJ, Kotula AW and Pierson D (1979) Differentiation of Selected Enterobacteriaceae by Pyrolysis – Gas-liquid Chromatography. Appl. Environm. Microbiol. 38:1098–1102Google Scholar
  139. Stoakes L, Kelly T, Schieven B, Harley D, Ramos M, Lannigan R, Groves D and Hussain Z (1991) Gas-Liquid Chromatography Analysis of Cellular Fatty Acids for Identification of Gram-Negative Anaerobic Bacilli. J. Clin. Microbiol. 29:2636–2638Google Scholar
  140. Stoeckli M, Farmer TB and Caprioli RM (1999) Automated Mass Spectrometry Imaging with a Matrix-Assisted Laser Desorption Ionization Time-of-Flight Instrument. J. Am. Soc. Mass Spectrom. 10:67–71CrossRefGoogle Scholar
  141. Stoll R and Röllgen FW (1979) Laser Desorption Mass Spectrometry of Thermally Labile Compounds Using a Continuous Wave CO2 Laser. Org. Mass Spectrom. 14:642–645CrossRefGoogle Scholar
  142. Stowers MA, Van Wuijckhuijse AL, Marijnissen JCM, Scarlett B, Van Baar BLM and Kientz CE (2000) Application of Matrix-Assisted Laser Desorption/Ionization to On-line Aerosol Time-of-flight Mass Spectrometry. Rapid Comm. Mass Spectrom. 14:829–833CrossRefGoogle Scholar
  143. Stowers MA, Van Wuijckhuijse AL, Marijnissen JCM and Kientz CE (2002) Method and Device for Detecting and Identifying Bio-aerosol Particles in the Air. Patent WO/2002/052246Google Scholar
  144. Suess DT and Prather KA (1999) Mass Spectrometry of Aerosols. Chem. Rev. 99:3007–3035CrossRefGoogle Scholar
  145. Syage JA, Hanning-Lee MA and Hanold KA (2000) A Man-portable Photoionization Mass Spectrometer. Field Anal. Chem. Technol. 4:204–215CrossRefGoogle Scholar
  146. Szponar B and Larsson L (2001) Use of Mass Spectrometry for Characterising Microbial Communities in Bioaerosols. Ann. Agric. Environ. Med. 8:111–117Google Scholar
  147. Tanaka K, Ido Y, Akita S, Yoshida Y and Yoshida T (1987) Development of Laser Ionization Time of Flight Mass Spectrometer IV - Generation of Quasi-Molecular Ions from High Mass Organic Compound. Proc. Second Japan-China Joint Symposium on Mass Spectrometry, Sept. 15–18, Osaka, JapanGoogle Scholar
  148. Taylor J, Goodacre R, Wade WG, Rowland JJ and Kell DB (1998) The Deconvolution of Pyrolysis Mass Spectra Using Genetic Programming: Application to the Identification of Some Eubacterium Species. FEMS Microbiol. Lett. 160:237–246CrossRefGoogle Scholar
  149. Tegnell A, Van Loock F, Baka A, Wallyn S, Hendriks J, Werner A and Gouvras G (2006) Development of a Matrix to Evaluate the Threat of Biological Agents Used for Bioterrorism. Cell Mol. Life Sci. 63:2223–2228CrossRefGoogle Scholar
  150. Tobias HJ, Schafer MP, Pitesky M, Fergenson DP, Horn J, Frank M and Gard EE (2005) Bioaerosol Mass Spectrometry for Rapid Detection of Individual Airborne Mycobacterium tuberculosis H37Ra Particles. Appl. Environ. Microbiol. 71:6086–6095CrossRefGoogle Scholar
  151. Tobias HJ, Pitesky ME, Fergenson DP, Steele PT, Horn J, Frank M and Gard EE (2006) Following the Biochemical and Morphological Changes of Bacillus atrophaeus Cells During the Sporulation Process using Bioaerosol Mass Spectrometry. J. Microbiol. Meth. 67:56–63CrossRefGoogle Scholar
  152. Tripathi A, Maswadeh WM and Snyder AP (2001) Optimization of Quartz Tube Pyrolysis Atmospheric Pressure Ionization Mass Spectrometry for the Generation of Bacterial Biomarkers. Rapid Commun. Mass Spectrom. 15:1672–1680CrossRefGoogle Scholar
  153. Uphoff A, Muskat T, Grotemeyer J (2004) Design, Setup and First Results of a Miniaturized Time-of-flight Mass Spectrometer with a Simple Reflector of a New Design. Eur. J. Mass Spectrom. 10:163–171CrossRefGoogle Scholar
  154. Valentine N, Wunschel S, Wunschel D, Petersen C and Wahl K (2005) Effect of Culture Conditions on Microorganism Identification by Matrix-assisted Laser Desorption Ionization Mass Spectrometry. Appl. Environ. Microbiol. 71:58–64CrossRefGoogle Scholar
  155. Van Baar BLM (2000) Characterisation of Bacteria by Matrix-assisted Laser Desorption/Ionisation and Electrospray Mass Spectrometry. FEMS Microbiol. Rev. 24:193–219CrossRefGoogle Scholar
  156. Van der Greef J, Tas AC, Ten Noever de Brauw MC (1988) Direct Chemical Ionization – Pattern Recognition: Characterization of Bacteria and Body Fluid Profiling. Biomed. Environm. Mass Spectrom. 16:45–50CrossRefGoogle Scholar
  157. Van Malderen H, Hoornaert S and Van Grieken R (1996) Identification of Individual Aerosol Particles Containing Cr, Pb, and Zn above the Noth Sea. Environ. Sci. Technol. 30:489–498CrossRefGoogle Scholar
  158. Van Wuijckhuijse AL, Grootveld CJ, Weiss M, Marijnissen JCM and Scarlett B (1998) Improvements to the TOF Aerosol Mass Spectrometer. J. Aerosol Sci. 29, Suppl. 1:443–444Google Scholar
  159. Van Wuijckhuijse AL, Stowers MA, Kleefsman WA, Van Baar BL M, Kientz CE and Marijnissen JCM (2005a) Matrix-Assisted Laser Desorption/Ionisation Aerosol Time-of-flight Mass Spectrometry for the Analysis of Bioaerosols: Development of a Fast Detector for Airborne Biological Pathogens. J. Aerosol Sci. 36:677–687CrossRefGoogle Scholar
  160. Van Wuijckhuijse A, Kientz C, Van Baar B, Kievit O, Busker R, Stowers M, Kleefsman W and Marijnissen J (2005b) Development of Bioaerosol Alarming Detector. Proc. NATO Adv. Res. Workshop on Defense Against Bioterror: Detection Technologies, Implementation Strategies and Commercial Opportunities, 8–11 April 2004, Madrid, Spain, In: Morrison D, Milanovich F, Ivnitski D, Austin TR (eds) NATO Security through Science Series B: Physics and Biophysics, vol 1. Springer, Berlin, pp 119–128Google Scholar
  161. Van Wuijckhuijse AL, Kientz CE, Van Baar BLM et al., paper in preparationGoogle Scholar
  162. Wang ZP, Russon L, Li L, Roser DC and Long SR (1998) Investigation of Spectral Reproducibility in Direct Analysis of Bacteria Proteins by Matrix-assisted Laser Desorption/Ionization Time-of-flight Mass Spectrometry. Rapid Commun. Mass Spectrom. 12:456–464CrossRefGoogle Scholar
  163. Wechsung R, Hillenkamp F, Kaufmann R, Nitsche R, Unsöld E and Vogt H (1978) LAMMA – A New Laser-Microprobe-Mass-Analyzer. Microscopica Acta (Suppl) 2:281–296Google Scholar
  164. Weiss M, Marijnissen JCM, Verheijen PJT and Scarlett B (1993) On-line Measurement of Particle Size and Composition. J. Aerosol Sci. 24 (Suppl) 1:201–202CrossRefGoogle Scholar
  165. Weiss M (1997) An On-line Mass Spectrometer for Aerosols. Masters Thesis, Delft University of Technology, pp 122–131Google Scholar
  166. Westman A, Huth-Fehre T, Demirev P and Sundqvist BUR (1995) Sample Morphology Effects in Matrix-assisted Laser Desorption/Ionization Mass Spectrometry of Proteins. J. Mass Spectrom. 30:206–211CrossRefGoogle Scholar
  167. Wieser P, Wurster R and Seiler H (1980) Identification of Airborne Particles by Laser Induced Mass Spectroscopy. Atmospheric Environm. 14:485–494CrossRefGoogle Scholar
  168. Wieten G, Haverkamp J, Meuzelaar HLC, Bondwijn HW and Berwald LG (1981) Pyrolysis Mass Spectrometry: A New Method to Differentiate Between the Mycobacteria of the “Tuberculosis Complex” and Other Mycobacteria. J. Gen. Microbiol. 122:109–118Google Scholar
  169. Wilkes JG, Rushing LG, Gagnon J-F, McCarthy SA, Rafii F, Khan AA, Kaysner CA, Heinze TM and Sutherland JB (2005a) Rapid Phenotypic Characterization of Vibrio Isolates by Pyrolysis Metastable Atom Bombardment Mass Spectrometry. Antonie van Leeuwenhoek 88:151–161CrossRefGoogle Scholar
  170. Wilkes JG, Rushing L, Nayak R, Buzatu DA and Sutherland JB (2005b) Rapid Phenotypic Characterization of Salmonella enterica Strains by Pyrolysis Metastable Atom Bombardment Mass Spectrometry with Multivariate Statistical and Artificial Neural Network Pattern Recognition. J. Microbiol. Methods 61:321–334CrossRefGoogle Scholar
  171. Wilkes JG, Rafii F, Sutherland JB, Rushing LG and Buzatu DA (2006) Pyrolysis Mass Spectrometry for Distinguishing Potential Hoax materials from Bioterror Agents. Rapid Commun. Mass Spectrom. 20:2383–2386CrossRefGoogle Scholar
  172. Williams TL, Andrzejewski D, Lay Jr. JO and Musser SM (2003) Experimental Factors Affecting the Quality and Reproducibility of MALDI TOF Mass Spectra Obtained from Whole Bacteria Cells. J. Am. Soc. Mass Spectrom. 14:342–351CrossRefGoogle Scholar
  173. Wunschel DS, Hill EA, McLean JS, Jarman K, Gorby YA, Valentine N and Wahl K (2005a) Effects of Varied pH, Growth Rate and Temperature Using Controlled Fermentation and Batch Culture on Matrix Assisted Laser Desorption/Ionization Whole Cell Protein Fingerprints. J. Microbiol. Meth. 62:259–271CrossRefGoogle Scholar
  174. Wunschel SC, Jarman KH, Petersen CE, Valentine NB, Wahl KL, Schauki D, Jackman J, Nelson CP and White 5th E (2005b) Bacterial Analysis by MALDI-TOF Mass Spectrometry: An Inter-laboratory Comparison. J. Am. Soc. Mass Spectrom. 16:456–462Google Scholar
  175. Yang M, Dale JM, Whitten WB and Ramsey JM (1995) Laser Desorption Tandem Mass Spectrometry of Individual Microparticles in an Ion Trap Mass Spectrometer. Anal. Chem. 67:4330–4334CrossRefGoogle Scholar
  176. Zakett D, Schoen AE, Cooks RG and Hemberger PH (1981) Laser-Desorption Mass Spectrometry / Mass Spectrometry and the Mechanism of Desorption Ionization. J. Am. Chem. Soc. 103:1295–1297CrossRefGoogle Scholar
  177. Zhang H and Caprioli RM (1996) Capillary Electrophoresis Combined with Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry, Continuous Sample Deposition on a Matrix-precoated Membrane Target. J. Mass Spectrom. 31:1039–1046CrossRefGoogle Scholar
  178. Zoller DL, Sum ST, Johnston MV, Hatfield GR and Qian K (1999) Determination of Polymer Type and Comonomer Content in Polyethylenes by Pyrolysis - Photoinization Mass Spectrometry. Anal. Chem. 71:866–872CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Arjan L. van Wuijckhuijse
    • 1
  • Ben L.M. van Baar
    • 1
  1. 1.TNO DefenceSecurity and SafetyRijswijkthe Netherlands

Personalised recommendations