Skip to main content
  • 4868 Accesses

Abstract

This chapter introduces the concept of using ultrasound for the manipulation of small particles in fluids for in vitro systems, and in particular how this can be applied to bacterial cells in suspension. The physical phenomena that lead to this effect are discussed, including radiation forces, cavitation, and streaming, thus allowing an appreciation of the limitations and applicability of the technique. Methods for generating ultrasound are described, together with practical examples of how to construct manipulation systems, and detailed examples are given of the current practical techniques of particle manipulation. These include filtration of particles for both batch and continuous systems, concentration of particles, cell washing from one fluid into another, fractionation of cellular populations, and trapping of material against flow. Concluding remarks discuss potential future applications of ultrasonic technology in microfluidic bacterial analysis and predict that it will be a significant tool in cell sample processing, with significant integration potential for Lab-On-Chip technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aboobaker N, Meegoda JN, Blackmore D (2003) Fractionation and segregation of suspended particles using acoustic and flow fields. J. Environ. Eng.-ASCE 129:427–434

    Article  Google Scholar 

  • Barnes RA, Jenkins P, Coakley WT (1998) Preliminary clinical evaluation of meningococcal disease and bacterial meningitis by ultrasonic enhancement. Arch. Dis. Child. 78:58–60

    Article  Google Scholar 

  • Bazou D, Coakley WT, Meek KM, Yang M, Pham DT (2004) Characterisation of the morphology of 2-D particle aggregates in different electrolyte concentrations in an ultrasound trap. Colloid Surf. A-Physicochem. Eng. Asp. 243:97–104

    Article  Google Scholar 

  • Bazou D, Foster GA, Ralphs JR, Coakley WT (2005a) Molecular adhesion development in a neural cell monolayer forming in an ultrasound trap. Molecular Membrane Biology 22:229–240

    Article  Google Scholar 

  • Bazou D, Kuznetsova LA, Coakley WT (2005b) Physical environment of 2-D animal cell aggregates formed in a short pathlength ultrasound standing wave trap. Ultrasound In Medicine And Biology 31:423–430

    Article  Google Scholar 

  • Bengtsson M, Laurell T (2004) Ultrasonic agitation in microchannels. Analytical And Bioanalytical Chemistry 378:1716–1721

    Article  Google Scholar 

  • Black JP, White RM, Grate JW (2002) Microsphere capture and perfusion in microchannels using flexural plate wave structures. IEEE, Munich, Germany, p 475

    Google Scholar 

  • Bohm H, Anthony P, Davey MR, Briarty LG, Power JB, Lowe KC, Benes E, Groschl M (2000) Viability of plant cell suspensions exposed to homogeneous ultrasonic fields of different energy density and wave type. Ultrasonics 38:629–632

    Article  Google Scholar 

  • Caton PF, White RM (2001) MEMS microfilter with acoustic cleaning. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090). IEEE, Interlaken, Switzerland, pp 479–482

    Google Scholar 

  • Cousins CM, Holownia P, Hawkes JJ, Limaye MS, Price CP, Keay PJ, Coakley WT (2000a) Plasma preparation from whole blood using ultrasound. Ultrasound in Medicine and Biology 26:881–888

    Article  Google Scholar 

  • Cousins CM, Holownia P, Hawkes JS, Price CP, Keay P, Coakley WT (2000b) Clarification of plasma from whole human blood using ultrasound. Ultrasonics 38:654–656

    Article  Google Scholar 

  • Cousins CM, Melin JR, Venables WA, Coakley WT (2000c) Investigation of enhancement of two processes, sedimentation and conjugation, when bacteria are concentrated in ultrasonic standing waves. Bioseparation 9:343–349

    Article  Google Scholar 

  • Danilov, S.D., Mironov, M.A., 2000. Mean force on a small sphere in a sound field in a viscous fluid. Journal of the Acoustical Society of America 107, 143–153.

    Article  Google Scholar 

  • Doblhoffdier O, Gaida T, Katinger H, Burger W, Groschl M, Benes E (1994) A Novel Ultrasonic Resonance Field Device for the Retention of Animal-Cells. Biotechnology Progress 10:428–432

    Article  Google Scholar 

  • Doinikov AA (1997a) Acoustic radiation force on a spherical particle in a viscous heat-conducting fluid .1. General formula. Journal of the Acoustical Society of America 101:713–721

    Article  Google Scholar 

  • Doinikov AA (1997b) Acoustic radiation force on a spherical particle in a viscous heat-conducting fluid .2. Force on a rigid sphere. Journal of the Acoustical Society of America 101:722–730

    Article  Google Scholar 

  • Doinikov AA (1997c) Acoustic radiation force on a spherical particle in a viscous heat-conducting fluid .3. Force on a liquid drop. Journal of the Acoustical Society of America 101:731–740

    Article  Google Scholar 

  • Frank A, Bolek W, Groschl M, Burger W, Benes E (1993) Separation of suspended particles by use of the inclined resonator concept. Ultrasonics International 93, Conference Proceedings, pp 519–522

    Google Scholar 

  • Gaida T, DoblhoffDier O, Strutzenberger K, Katinger H, Burger W, Groschl M, Handl B, Benes E (1996) Selective retention of viable cells in ultrasonic resonance field devices. Biotechnology Progress 12:73–76

    Article  Google Scholar 

  • Gherardini L, Cousins CM, Hawkes JJ, Spengler J, Radel S, Lawler H, Devcic-Kuhar B, Groschl M (2005) A new immobilisation method to arrange particles in a gel matrix by ultrasound standing waves. Ultrasound In Medicine And Biology 31:261–272

    Article  Google Scholar 

  • Giddings JC (1993) Field-flow Fractionation: Analysis of Macromolecular, Colloidal, and Particulate Materials Science 260:1456–1465

    Google Scholar 

  • Gonzalez I, Gallego-Juarez JA, Riera E (2003) The influence of entrainment on acoustically induced interactions between aerosol particles - an experimental study. Journal of Aerosol Science 34:1611–1631

    Article  Google Scholar 

  • Gor’kov LP (1962) On the forces acting on a small particle in an acoustical field in an ideal fluid. Sov. Phys. Dokl. 6:773–775

    Google Scholar 

  • Gray SJ, Sobanski MA, Kaczmarski EB, Guiver M, Marsh WJ, Borrow R, Barnes RA, Coakley WT (1999) Ultrasound-enhanced latex immunoagglutination and PCR as complementary methods for non-culture-based confirmation of meningococcal disease. J. Clin. Microbiol. 37:1797–1801

    Google Scholar 

  • Gröschl M (1998a) Ultrasonic separation of suspended particles - Part I: Fundamentals. Acustica 84:432–447

    Google Scholar 

  • Gröschl M (1998b) Ultrasonic separation of suspended particles - Part II: Design and operation of separation devices. Acustica 84:632–642

    Google Scholar 

  • Grossner MT, Belovich JM, Feke DL (2005) Transport analysis and model for the performance of an ultrasonically enhanced filtration process. Chemical Engineering Science 60:3233–3238

    Article  Google Scholar 

  • Grundy MA, Coakley WT, Clarke DJ (1989) Rapid detection of hepatitis-B virus using a hemagglutination assay in an ultrasonic standing wave field. Journal of Clinical & Laboratory Immunology 30:93–96

    Google Scholar 

  • Gupta S, Feke DL (1998) Filtration of particulate suspensions in acoustically driven porous media. Aiche Journal 44:1005–1014

    Article  Google Scholar 

  • Haake A, Dual J (2004) Positioning of small particles by an ultrasound field excited by surface waves. Ultrasonics 42:75–80

    Article  Google Scholar 

  • Haake A, Dual J (2005) Contactless micromanipulation of small particles by an ultrasound field excited by a vibrating body. Journal of the Acoustical Society of America 117:2752–2760

    Article  Google Scholar 

  • Haake A, Neild A, Kim DH, Ihm JE, Sun Y, Dual J, Ju BK (2005a) Manipulation of cells using an ultrasonic pressure field. Ultrasound In Medicine And Biology 31:857–864

    Article  Google Scholar 

  • Haake A, Neild A, Radziwill G, Dual J (2005b) Positioning, displacement, and localization of cells using ultrasonic forces. Biotechnology And Bioengineering 92:8–14

    Article  Google Scholar 

  • Harris NR, Hill M, Beeby SP, Shen Y, White NM, Hawkes JJ, Coakley WT (2003) A Silicon Microfluidic Ultrasonic Separator. Sens. Actuator B-Chem 95:425–434

    Article  Google Scholar 

  • Harris NR, Hill M, Torah RN, Townsend RJ, Beeby SP, White NM, Ding J (2006) A multilayer thick-film PZT actuator for MEMs applications. Sensors and Actuators A: Physical 132:311–316

    Article  Google Scholar 

  • Harris NR, Hill M, Townsend RJ, White NM, Beeby SP (2005) Performance of a micro-engineered ultrasonic particle manipulator. Sensors and Actuators B: Chemical 111:481–486

    Article  Google Scholar 

  • Harris NR, Hill M, White NM, Beeby SP (2004) Acoustic power output measurements for thick-film PZT transducers. Electronics Letters 40:636–637

    Article  Google Scholar 

  • Hawkes JJ, Barber RW, Emerson DR, Coakley WT (2004a) Continuous cell washing and mixing driven by an ultrasound standing wave within a microfluidic channel. Lab On A Chip 4:446–452

    Article  Google Scholar 

  • Hawkes JJ, Barrow D, Cefai J, Coakley WT (1998a) A laminar flow expansion chamber facilitating downstream manipulation of particles concentrated using an ultrasonic standing wave. Ultrasonics 36:901–903

    Article  Google Scholar 

  • Hawkes JJ, Barrow D, Coakley WT (1998b) Microparticle manipulation in millimetre scale ultrasonic standing wave chambers. Ultrasonics 36:925–931

    Article  Google Scholar 

  • Hawkes JJ, Coakley WT (1996) A continuous flow ultrasonic cell-filtering method. Enzyme And Microbial Technology 19:57–62

    Article  Google Scholar 

  • Hawkes JJ, Coakley WT (2001) Force field particle filter, combining ultrasound standing waves and laminar flow. Sensors and Actuators B-Chemical 75:213–222

    Article  Google Scholar 

  • Hawkes JJ, Limaye MS, Coakley WT (1997) Filtration of bacteria and yeast by ultrasound-enhanced sedimentation. J. Appl. Microbiol. 82:39–47

    Article  Google Scholar 

  • Hawkes JJ, Long MJ, Coakley WT, McDonnell MB (2004b) Ultrasonic deposition of cells on a surface. Biosensors & Bioelectronics 19:1021–1028

    Article  Google Scholar 

  • Hertz HM (1995) Standing-Wave Acoustic Trap For Nonintrusive Positioning Of Microparticles. Journal of Applied Physics 78:4845–4849

    Article  Google Scholar 

  • Higashitani K, Fukushima M, Matsuno Y (1981) Migration of suspended particles in plane stationary ultrasonic field. Chemical Eng Science 36:1877–1882

    Article  Google Scholar 

  • Hill M (2003) The selection of layer thicknesses to control acoustic radiation force profiles in layered resonators. JASA 114:2654–2661

    Google Scholar 

  • Hill M, Shen Y, Hawkes JJ (2002) Modelling of layered resonators for ultrasonic separation. Ultrasonics 40:385–392

    Article  Google Scholar 

  • Hill M, Wood RJK (2000) Modelling in the design of a flow-through ultrasonic separator. Ultrasonics 38:662–665

    Article  Google Scholar 

  • Hultström J, Manneberg O, Dopf K, Hertz HM, Brismar H, Wiklund M (2006) Proliferation and viability of adherent cells manipulated by standing-wave ultrasound in a microfluidic chip. Ultrasound Med. Biol. 33:175–181

    Google Scholar 

  • Jenkins P, Barnes RA, Coakley WT (1997) Detection of meningitis antigens in buffer and body fluids by ultrasound-enhanced particle agglutination. Journal of Immunological Methods 205:191–200

    Article  Google Scholar 

  • Jepras RI, Clarke DJ, Coakley WT (1989) Agglutination of legionella-pneumophila by antiserum is accelerated in an ultrasonic standing wave. Journal of Immunological Methods 120:201–205

    Article  Google Scholar 

  • Johann RM (2006) Cell trapping in microfluidic chips. Analytical And Bioanalytical Chemistry 385:408–412

    Article  Google Scholar 

  • Kaduchak G, Sinha DN, Lizon DC (2002) Novel cylindrical, air-coupled acoustic levitation/concentration devices. Review Of Scientific Instruments 73:1332–1336

    Article  Google Scholar 

  • Kapishnikov S, Kantsler V, Steinberg V (2006) Continuous particle size separation and size sorting using ultrasound in a microchannel. Journal Of Statistical Mechanics-Theory And Experiment Need publication data after journal title

    Google Scholar 

  • Khanna S, Amso NN, Paynter SJ, Coakley WT (2003). Contrast agent bubble and erythrocyte behavior in a 1.5-MHz standing ultrasound wave. Ultrasound In Medicine And Biology 29:1463–1470

    Article  Google Scholar 

  • Khanna S, Hudson B, Pepper CJ, Amso NN, Coakley WT (2006) Fluorescein isothiocynate-dextran uptake by chinese hamster ovary cells in a 1.5,MHz ultrasonic standing wave in the presence of contrast agent. Ultrasound in Medicine And Biology 32:289–295

    Article  Google Scholar 

  • King LV (1934) On the acoustic radiation pressure on spheres. Proc R. Soc. London A147:212–240

    Google Scholar 

  • Krimholz R, Leedom DA, Matthaei GL (1970) New Equivalent Circuit for Elementary piezoelectric transducers. Electronics Letters 6:398–399

    Article  Google Scholar 

  • Kumar M, Feke DL, Belovich JM (2005) Fractionation of cell mixtures using acoustic and laminar flow fields. Biotechnology And Bioengineering 89:129–137

    Article  Google Scholar 

  • Kuznetsova LA, Coakley WT (2004) Microparticle concentration in short path length ultrasonic resonators: Roles of radiation pressure and acoustic streaming. J. Acoust. Soc. Am. 116:1956–1966

    Article  Google Scholar 

  • Kuznetsova LA, Coakley WT (2007) Applications of ultrasound streaming and radiation force in biosensors. Biosensors & Bioelectronics 22:1567–1577

    Article  Google Scholar 

  • Kuznetsova LA, Martin SP, Coakley WT (2005) Sub-micron particle behaviour and capture at an immuno-sensor surface in an ultrasonic standing wave. Biosensors & Bioelectronics 21:940–948

    Article  Google Scholar 

  • Lee YH, Peng CA (2005) Enhanced retroviral gene delivery in ultrasonic standing wave fields. Gene Therapy 12: 625–633

    Article  Google Scholar 

  • Leighton TG (1994) The Acoustic Bubble. Academic Press, San Diego

    Google Scholar 

  • Leighton TG (1995) Bubble population phenomena in acoustic cavitation. Ultrasonics Sonochemistry 2:S123

    Article  Google Scholar 

  • Leighton TG (2007) What is ultrasound? Progress in Biophysics & Molecular Biology 93:3–83

    Article  Google Scholar 

  • Leung E, Jacobi N, Wang T (1981) Acoustic radiation force on a rigid sphere in a resonance chamber. Journal of the Acoustical Society of America 70:1762–1767

    Article  Google Scholar 

  • Leung E, Lee CP, Jacobi N, Wang TG (1982) Resonance Frequency-Shift Of An Acoustic Chamber Containing A Rigid Sphere. Journal of the Acoustical Society of America 72:615–620

    Article  Google Scholar 

  • Lighthill J (1978) Acoustic Streaming. Journal of Sound and Vibration 61:391–418

    Article  MATH  Google Scholar 

  • Lilliehorn T, Johansson S (2004) Fabrication of multilayer 2D ultrasonic transducer microarrays by green machining. Journal of Micromechanics And Microengineering 14:702–709

    Article  Google Scholar 

  • Lilliehorn T, Nilsson M, Simu U, Johansson S, Almqvist M, Nilsson J, Laurell T (2005a) Dynamic arraying of microbeads for bioassays in microfluidic channels. Sensors And Actuators B-Chemical 106:851–858

    Article  Google Scholar 

  • Lilliehorn T, Simu U, Nilsson M, Almqvist M, Stepinski T, Laurell T, Nilsson J, Johansson S (2005b) Trapping of microparticles in the near field of an ultrasonic transducer. Ultrasonics 43:293–303

    Article  Google Scholar 

  • Martin SP, Townsend RJ, Kuznetsova LA, Borthwick KAJ, Hill M, McDonnell MB, Coakley WT (2005) Spore and micro-particle capture on an immunosensor surface in an ultrasound standing wave system. Biosensors and Bioelectronics 21:758–767

    Article  Google Scholar 

  • Mason TJ (2007) Developments in ultrasound—Non-medical Progress in Biophysics & Molecular Biology 93:166–175

    Article  Google Scholar 

  • Mason WP (1942) Electromechanical Transducers and Wave Filters. Van Nostrand, New York

    Google Scholar 

  • Masudo T, Okada T (2006) Particle separation with ultrasound radiation force. Current Analytical Chemistry 2:213–227

    Article  Google Scholar 

  • Morgan J, Spengler JF, Kuznetsova L, Coakley WT, Xu J, Purcell WM (2004) Manipulation of in vitro toxicant sensors in an ultrasonic standing wave. Toxicol. Vitro 18:115–120

    Article  Google Scholar 

  • Neild A, Oberti S, Beyeler F, Dual J, Nelson BJ (2006) A micro-particle positioning technique combining an ultrasonic manipulator and a microgripper. Journal of Micromechanics and Microengineering 16:1562–1570

    Article  Google Scholar 

  • Neild A, Oberti S, Dual J (2007) Design, modeling and characterization of microfluidic devices for ultrasonic manipulation Sensors and Actuators B: Chemical 121:452–461

    Google Scholar 

  • Petersson F, Nilsson A, Holm C, Jonsson H, Laurell T (2004) Separation of lipids from blood utilizing ultrasonic standing waves in microfluidic channels. Analyst 129:938–943

    Article  Google Scholar 

  • Petersson F, Nilsson A, Holm C, Jonsson H, Laurell T (2005a) Continuous separation of lipid particles from erythrocytes by means of laminar flow and acoustic standing wave forces. Lab On A Chip 5:20–22.

    Article  Google Scholar 

  • Petersson F, Nilsson A, Jonsson H, Laurell T (2005b) Carrier medium exchange through ultrasonic particle switching in microfluidic channels. Analytical Chemistry 77:1216–1221

    Article  Google Scholar 

  • Rayleigh JW (1902) On the pressure of vibrations. Philosophical Magazine 3:338–346

    Google Scholar 

  • Riley N (2001) Steady streaming. Annu. Rev. Fluid Mech. 33:43–65

    Article  MathSciNet  Google Scholar 

  • Rosen CZ, Hiremath BV, Newnham RE (1992) Piezoelectricity (Key Papers in Physics). AIP Press, location of publication needed here

    Google Scholar 

  • Schram CJ (1991) Manipulation of Particles in an Acoustic Field. In: Mason TJ (ed) Advances in Sonochemistry. Publisher, City of publication

    Google Scholar 

  • Sherrit S, Leary S, Dolgin B, Bar-Cohen Y (1999) Comparison of the Mason and KLM Equivalent Circuits for Piezoelectric Resonators in the Thickness Mode. 1999 IEEE Ultrasonics Symposium, City, Nevada, pp 921–926

    Google Scholar 

  • Shirgaonkar IZ, Lanthier S, Kamen A (2004) Acoustic cell filter: a proven cell retention technology for perfusion of animal cell cultures. Biotechnology Advances 22:433–444

    Article  Google Scholar 

  • Sobanski MA, Tucker CR, Thomas NE, Coakley WT (2000) Sub-micron particle manipulation in an ultrasonic standing wave: Applications in detection of clinically important biomolecules. Bioseparation 9:351–357

    Article  Google Scholar 

  • Sobanski MA, Vince R, Biagini GA, Cousins C, Guiver M, Gray SJ, Kaczmarski EB, Coakley WT (2002) Ultrasound enhanced detection of individual meningococcal serogroups by latex immunoassay. J. Clin. Pathol. 55:37–40

    Google Scholar 

  • Sritharan K, Strobl CJ, Schneider MF, Wixforth A, Guttenberg Z (2006) Acoustic mixing at low Reynold’s numbers. Applied Physics Letters 88

    Google Scholar 

  • Stecher G (1987) Free Supporting Structures in Thick-film Technology:a substrate integrated pressure sensor. 6th European Micrelectronics Conference, Bournemouth, pp 421–427

    Google Scholar 

  • Thomas NE, Sobanski MA, Coakley WT (1999) Ultrasonic enhancement of coated particle agglutination immunoassays: Influence of particle density and compressibility. Ultrasound in Medicine and Biology 25:443–450

    Article  Google Scholar 

  • Townsend RJ, Hill M, Harris NR, White NM (2004) Modelling of particle paths passing through an ultrasonic standing wave. Ultrasonics 42:319–324

    Article  Google Scholar 

  • Townsend RJ, Hill M, Harris NR, White NM (2006) Investigation of two-dimensional acoustic resonant modes in a particle separator Ultrasonics 44:e467–e471

    Google Scholar 

  • Townsend RJ, Hill M, Harris NR, White NM, Beeby SP, Wood RJK (2005) Fluid modelling of microfluidic separator channels. Sensors and Actuators B: Chemical 111:455–462

    Article  Google Scholar 

  • Vilkner T, Janasek D, Manz A (2004) Micro total analysis systems. Recent developments. Analytical Chemistry 76:3373–3385

    Google Scholar 

  • Wang ZW, Grabenstetter P, Feke DL, Belovich JM (2004) Retention and viability characteristics of mammalian cells in an acoustically driven polymer mesh. Biotechnology Progress 20:384–387

    Article  Google Scholar 

  • Westervelt PJ (1951) The theory of steady forces caused by sound waves. Journal of the Acoustical Society of America 23,:312–315

    Article  MathSciNet  Google Scholar 

  • Whitworth G, Coakley WT (1992) Particle Column Formation In A Stationary Ultrasonic-Field. Journal of the Acoustical Society of America 91:79–85

    Article  Google Scholar 

  • Wiklund M, Günther C, Lemor R, Jäger M, Fuhr G, Hertz HM (2006) Ultrasonic standing wave manipulation technology integrated into a dielectrophoretic chip. Lab on a Chip 6:1537–1544

    Article  Google Scholar 

  • Wiklund M, Hertz HM (2006) Ultrasonic enhancement of bead-based bioaffinity assays. Lab on a Chip 6:1279–1292

    Article  Google Scholar 

  • Wiklund M, Nilsson S, Hertz HM (2001) Ultrasonic trapping in capillaries for trace-amount biomedical analysis. Journal of Applied Physics 90:421–426

    Article  Google Scholar 

  • Wiklund M, Spegel P, Nilsson S, Hertz HM (2003) Ultrasonic-trap-enhanced selectivity in capillary electrophoresis. Ultrasonics 41, 329–333.

    Article  Google Scholar 

  • Wiklund M, Toivonen J, Tirri M, Hanninen P, Hertz HM (2004) Ultrasonic enrichment of microspheres for ultrasensitive biomedical analysis in confocal laser-scanning fluorescence detection. Journal of Applied Physics 96:1242–1248

    Article  Google Scholar 

  • Woodside SM, Bowen BD, Piret JM (1997) Measurement of ultrasonic forces for particle-liquid separations. Aiche Journal 43:1727–1736

    Article  Google Scholar 

  • Yasuda K (2000) Non-destructive, non-contact handling method for biomaterials in micro-chamber by ultrasound. Sensors and Actuators B-Chemical 64:128–135

    Article  Google Scholar 

  • Yasuda K, Umemura S, Takeda K (1996) Particle separation using acoustic radiation force and electrostatic force. Journal of the Acoustical Society of America 99:1965–1970

    Article  Google Scholar 

  • Yosioka K, Kawasima Y (1955) Acoustic radiation pressure on a compressible sphere. Acoustica 5:167–173

    Google Scholar 

  • Zarembo LK (1971) Acoustic Streaming. In: Rozenberg LD (ed) High Intensity Ultrasonic Fields. Plenum Press, New York

    Google Scholar 

  • Zelenka J (1986) Piezoelectric Resonators and their Applications. Elsevier, city of publication

    Google Scholar 

  • Zourob M, Hawkes JJ, Coakley WT, Brown BJT, Fielden PR, McDonnell MB, Goddard NJ (2005) Optical leaky waveguide sensor for detection of bacteria with ultrasound attractor force. Analytical Chemistry 77:6163–6168

    Article  Google Scholar 

  • Zourob M, Mohr S, Treves Brown BJ, Fielden PR, McDonnell M, Goddard NJ (2003) The development of a metal clad leaky waveguide sensor for the detection of particles Sensors and Actuators A: Physical 90:296–307

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hill, M., Harris, N.R. (2008). Ultrasonic Microsystems for Bacterial Cell Manipulation. In: Zourob, M., Elwary, S., Turner, A. (eds) Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems. Springer, New York, NY. https://doi.org/10.1007/978-0-387-75113-9_35

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-75113-9_35

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-75112-2

  • Online ISBN: 978-0-387-75113-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics