Skip to main content

Detection of Pathogens by On-Chip PCR

  • Chapter
  • 4851 Accesses

Abstract

The purpose of this chapter is threefold: introducing microfluidics to the general audience, describing in detail the polymerase chain reaction (a technique used for DNA amplification), and reviewing the state-of-the-art methods regarding the detection of pathogens by on-chip PCR. The first section gives a brief introduction to the field of microfluidics. Although the microfluidic technologies have been developed substantially since 1990, their existence and applications are still unknown from the general public. The history and the applications of miniaturized total analysis systems (μTAS) are therefore summarized in the first section (Microfluidics). Secondly, the polymerase chain reaction (PCR) is described in detail. The second section (DNA amplification) therefore covers a brief history of DNA and the applications, requirements, and processes of PCR. As a conclusion of this section, the different techniques available to perform PCR (namely conventional PCR, real-time PCR and on-chip PCR) are compared. Lastly a mini-review presents the state-of-the-art in terms of detection of pathogens by on-chip PCR. The polymerase chain reaction is becoming recognized by official administrations as an acceptable method for the detection of pathogens. It is therefore no surprise that the microfluidic community is also developing devices to support this transition. The last section (Minireview) provides a snapshot of the most exquisite techniques available for the on-chip detection and analysis of pathogens.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Alberts B, Bray D, Johnson A, Lewis JA, Raff M, Roberts K, Walter P (1998) Essential cell biology - An introduction to the molecular biology of the cell. Garland Publishing, Inc., New York and London

    Google Scholar 

  • Auroux P-A (2005) Microfluidic devices used for shunting polymerase chain reactions. PhD thesis. Imperial College, London, UK

    Google Scholar 

  • Auroux P-A, Day P, Manz A (2003) Sample-shunting based PCR microfluidic device. Gordon Research Conference—Physics and Chemistry of Microfluidics. Big Sky Resort, Montana, USA

    Google Scholar 

  • Auroux P-A, Day PJ, Manz A (2005) Quantitative study of the adsorption of PCR reagents during on-chip bi-directional shunting PCR. International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS) 283–285

    Google Scholar 

  • Auroux P-A, Day PJR, Niggli F, Manz A (2002) Microfluidic device for detection of low copy number nucleic acids. Nanotech 2002. Montreux, Switzerland

    Google Scholar 

  • Auroux P-A, Day PJR, Niggli F, Manz A (2003) PCR micro-volume device for detection of nucleic acids. The nanotechnology conference and trade show. San Francisco, CA, USA, p. 55.

    Google Scholar 

  • Auroux P-A, Koc Y, deMello AJ, Manz A, Day PJR (2004) Miniaturised nucleic acid analysis. Lab Chip 4:534–546

    Article  Google Scholar 

  • Baker J, Strachan M, Swartz K, Yurkovetsky Y, Rulison A, Brooks C, Kopf-Sill A (2003) Single molecule amplification in a continuous flow labchip device. International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS) 1335

    Google Scholar 

  • Belgrader P, Benett W, Hadley D, Long G, Mariella RJ, Milanovich F, Nasarabadi S, Nelson W, Richards J, Stratton P (1998) Rapid pathogen detection using a microchip PCR array instrument. Clin Chem 44:2191–2194

    Google Scholar 

  • Belgrader P, Benett W, Hadley D, Long G, Mariella RJ, Milanovich F, Nasarabadi S, Nelson W, Richards J, Stratton P (1999) Infection disease: PCR detection of bacteria in seven minutes. Science 284:449

    Article  Google Scholar 

  • Belgrader P, Elkin CJ, Brown SB, Nasarabadi SN, Langlois RG, Milanovich FP, Colston BWJ, Marshall GD (2003) A reusable flow-through polymerase chain reaction instrument for continuous monitoring of infectious biological agents. Anal Chem 75:3114–3118

    Article  Google Scholar 

  • Bonnet G, Tyagi S, Libchaber A, Kramer FR (1999) Thermodynamics basis of the enhanced specificity of structured DNA probes. Proceedings of the National Academy of Science USA 96:6171–6176

    Article  Google Scholar 

  • Branebjerg J, Fabius B, Gravesen P (1994) Application of miniature analyzers - from microfluidic components to micro-TAS. International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS) 141–151

    Google Scholar 

  • Bu MQ, Melvin T, Ensell G, Wilkinson JS, Evans AGR (2003) Design and theoretical evaluation of a novel microfluidic device to be used for PCR. J Micromech Microeng 13:S125–S130

    Article  Google Scholar 

  • Burns MA, Johnson BN, Brahmasandra SN, Handique K, Webster JR, Krishnan M, Sammarco TS, Man PM, Jones D, Heldsinger D, Mastrangelo CH, Burke DT (1998) An integrated nanoliter DNA analysis device. Science 282:484–487

    Article  Google Scholar 

  • Bustin SA (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 29:23–39

    Article  Google Scholar 

  • Caldarelli-Stefano R, Vago L, Bonetto S, Nebuloni M, Costanzi G (1999) Use of magnetic beads for tissue DNA extraction and IS6110 Mycobacterium tuberculosis PCR. Journal of Clinical Pathology: Molecular Pathology 52:158–163

    Article  Google Scholar 

  • Chalmers JJ, Zborowski M, Sun LP, Moore L (1998) Flow through, immunomagnetic cell separation. Biotechnol Prog 14:141–148

    Article  Google Scholar 

  • Chang YH, Lee GB, Huang FC, Chen YY, Lin JL (2006) Integrated polymerase chain reaction chips utilizing digital microfluidics. Biomedical Microdevices 8:215–225

    Article  Google Scholar 

  • Chaudhari AM, Woudenberg TM, Albin M, Goodson KE (1998) Transient liquid crystal thermometry of microfabricated PCR vessel arrays. J Microelectromech Syst 7:345–355

    Article  Google Scholar 

  • Cheng J, Shoffner MA, Hvichia GE, Kricka LJ, Wilding P (1996a) Chip PCR II. Investigation of different PCR amplification systems in microfabricated silicon-glass chips. Nucleic Acids Res 24:380–385

    Google Scholar 

  • Cheng J, Shoffner MA, Mitchelson KR, Kricka LJ, Wilding P (1996b) Analysis of ligase chain reaction products amplified in a silicon-glass chip using capillary electrophoresis. J Chromatogr A 732:151–158

    Article  Google Scholar 

  • Chien A, Edgar DB, Trela JM (1976) Deoxyribonucleic acid polymerase from the extreme thermophile Thermus Aquaticus. Journal of Bacteriology 127:1550–1557

    Google Scholar 

  • Chiou J, Matsudaira P, Sonin A, Ehrlich D (2001) A Closed-Cycle Capillary Polymerase Chain Reaction Machine. Anal Chem 2018–2021

    Google Scholar 

  • Chronis N, Lam W, Lee L (2001) A microfabricated bio-magnetic separator based on continuous hydrodynamic parallel flow. International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS) 497–498

    Google Scholar 

  • Connors E, Lundregan T, Miller N, McEwen T (1996) Convicted by juries, exonerated by science: case studies in the use of DNA evidence to establish innocence after trial. National Institute of Justice

    Google Scholar 

  • de Mello AJ (2001) DNA amplification: does ‘small’ really mean ‘efficient’? Lab on a Chip 1:24N

    Article  Google Scholar 

  • de Mello AJ, Wootton RCR (2002) But what is it good for? Applications of microreactor technology for the fine chemical industry. Lab on a Chip 1:7N

    Article  Google Scholar 

  • Deisingh AK, Thompson M (2004) Strategies for the detection of Escherichia coli O157 : H7 in foods. Journal of Applied Microbiology 96:419–429

    Article  Google Scholar 

  • Deng T, Whitesides GM, Radhakrishnan M, Zabow G, Prentiss M (2001) Manipulation of magnetic microbeads in suspension using micromagnetic systems fabricated with soft lithography. Appl Phys Lett 78:1775–1777

    Article  Google Scholar 

  • Derzelle S, Dilasser F (2006) A robotic DNA purification protocol and real-time PCR for the detection of Enterobacter sakazakii in powdered infant formulae. Bmc Microbiology 6

    Google Scholar 

  • Don RH, Cox PT, Wainwright BJ, Baker K, Mattick JS (1991) ‘Touchdown’ PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res 19:4008

    Article  Google Scholar 

  • DuPont Qualicon (2007) BAX (R) System Q7 - The power to do more. DuPontQualicon brochure

    Google Scholar 

  • Feustel A, Muller J, Relling V (1994) A Microsystem Mass Spectrometer. International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS) 299–304

    Google Scholar 

  • Forsdyle DR (1995) Sense in anti-sense? Journal of Molecular Evolution 41:582–586

    Google Scholar 

  • Friedman NA, Meldrum DR (1998) Capillary tube resistive thermal cycling. Anal Chem 70:2997–3002

    Article  Google Scholar 

  • Fuhr G, Wagner B (1994) Electric Field Mediated Cell Manipulation, Characterisation and Cultivation in Highly Conductive Media. International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS) 209–214

    Google Scholar 

  • Gilbert TR, Clay AM (1973) Determination of Ammonia in Aquaria and Sea Water using the ammonia electrode. Anal Chem 45:1757–1759

    Article  Google Scholar 

  • Han J, Craighead G (2000) Separation of long DNA molecules in a microfabricated entropic trap array. Science 288:1026–1029

    Article  Google Scholar 

  • Hardt S, Dadic D, Doffing F, Drese KS, Münchov G, Sörensen O (2004) Development of a slug-flow PCR chip with minimum heating cycle times. The nanotechnology conference and trade show. Boston, MA, USA, p. 55.

    Google Scholar 

  • Harrison DJ, Glavina PG, Manz A (1993) Towards Miniaturized Electrophoresis and Chemical-Analysis Systems on Silicon - an Alternative to Chemical Sensors. Sens Actuators B 10:107–116

    Article  Google Scholar 

  • Harrison DJ, Manz A, Fan ZH, Ludi H, Widmer HM (1992) Capillary Electrophoresis and Sample Injection Systems Integrated on a Planar Glass Chip. Anal Chem 64:1926–1932

    Article  Google Scholar 

  • Harrison DJ, Manz A, Glavina PG (1991) Transducers ’91 792–795

    Google Scholar 

  • Higuchi R, Dollinger G, Walsh PS, Griffith R (1992) Simultaneous Amplification and Detection of Specific DNA- Sequences. Bio-Technology 10:413–417

    Google Scholar 

  • Higuchi R, Fockler C, Dollinger G, Watson R (1993) Kinetic PCR Analysis - Real-Time Monitoring of DNA Amplification Reactions. Bio-Technology 11:1026–1030

    Google Scholar 

  • Huang FC, Liao CS, Lee GB (2006) An integrated microfluidic chip for DNA/RNA amplification, electrophoresis separation and on-line optical detection. Electrophoresis 27:3297–3305

    Article  Google Scholar 

  • Jacobson DR, Xu JJ, Smith IC (1996) Lung cancer screening and diagnosis via k-ras mutation detection. International symposium on the impact of cancer biotechnology on diagnostics and prognostics indicators. Nice, France

    Google Scholar 

  • Jacobson SC, Hergenröder R, Koutny LB, Ramsey JM (1994) High-Speed Separations on a Microchip. Anal Chem 66:1114–1118

    Article  Google Scholar 

  • Jareo PW, Preheim LC, Snitily MU, Gentry MJ (1997) Use of magnetic cell sorting to isolate blood neutrophils from rats. Lab Anim Sci 47:414–418

    Google Scholar 

  • Kamei T, Toriello NM, Lagally ET, Blazej RG, Scherer JR, Street RA, Mathies RA (2005) Microfluidic genetic analysis with an integrated a-Si : H detector. Biomedical Microdevices 7:147–152

    Article  Google Scholar 

  • Khandurina J, McKnight TE, Jacobson SC, Waters LC, Foote RS, Ramsey JM (2000) Integrated system for rapid PCR-based DNA analysis in microfluidic devices. Anal Chem 72:2995–3000

    Article  Google Scholar 

  • Kopp MU, de Mello AJ, Manz A (1998) Chemical amplification: Continuous-flow PCR on a chip. Science 280: 1046–1048

    Article  Google Scholar 

  • Kourkine IV, Hestekin CN, Magnusdottir SO, Barron AE (2002) Optimized sample preparation methods for tandem capillary electrophoresis single -strand conformation polymorphism/heteroduplex analysis (CE-SSCP/HA), Biotechniques, 33:318–325.

    Google Scholar 

  • Krishnan M, Ugaz VM, Burns MA (2003) PCR in a Rayleigh-Benard convection cell. Science 298:793

    Article  Google Scholar 

  • Krizova J, Spanova A, Rittich B, Horak D (2005) Magnetic hydrophilic methacrylate-based polymer microspheres for genomic DNA isolation. Journal of Chromatography A 1064:247–253

    Article  Google Scholar 

  • Lagally ET, Medintz I, Mathies RA (2001) Single-molecule DNA amplification and analysis in an integrated microfluidic device. Anal Chem 73:565–570

    Article  Google Scholar 

  • Lee JG, Cheong KH, Huh N, Kim S, Choi JW, Ko C (2006) Microchip-based one step DNA extraction and real-time PCR in one chamber for rapid pathogen identification. Lab on a Chip 6:886–895

    Article  Google Scholar 

  • Lee LG, Connell CR, Bloch W (1993) Allelic Discrimination by Nick-Translation PCR with Fluorogenic Probes. Nucleic Acids Res 21:3761–3766

    Article  Google Scholar 

  • Li HH, Gyllensten UB, Cui XF, Saiki RK, Erlich HA, Arnheim N (1988) Amplification and Analysis of Dna-Sequences in Single Human-Sperm and Diploid-Cells. Nature 335:414–417

    Article  Google Scholar 

  • Liakopoulos TM, Choi JW, Ahn CH (1997) A bio-magnetic bead separator on glass chips using semi-encapulated spiral electromagnets. Transducers ’97 1:485–488

    Google Scholar 

  • Liu J, Enzelberger M, Quake S (2002) A nanoliter device for polymerase chain reaction. Electrophoresis 23:1531–1536

    Article  Google Scholar 

  • Liu L (2003) Bioinformatics III: Primer Design. ICBR Molecular Biology International – Bioinformatic Workshop in Nicaragual.

    Google Scholar 

  • Liu RH, Yang J, Lenigk R, Bonanno J, Grodzinski P (2004) Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection. Anal Chem 76:1824–1831

    Article  Google Scholar 

  • Llop P, Bonaterra A, Penalver J, Lopez MM (2000) Development of a highly sensitive nested-PCR procedure using a single closed tube for detection of Erwinia amylovora in asymptomatic plant material. Applied and Environmental Microbiology 66:2071–2078

    Article  Google Scholar 

  • Lundberg KS, Short JM, Sorge JA, Mathur EJ (1991) A New Thermostable Polymerase with High Fidelity. Faseb J 5:A1549

    Google Scholar 

  • Manz A, Graber N, Widmer HM (1990b) Miniaturized Total Chemical-Analysis Systems - a Novel Concept for Chemical Sensing. Sens Actuators B 1:244–248

    Article  Google Scholar 

  • Manz A, Harrison DJ, Fettinger JC, Verpoorte E, Ludi H, Widmer HM (1991) Transducers ’91 939–941

    Google Scholar 

  • Manz A, Harrison DJ, Verpoorte EMJ, Fettinger JC, Paulus A, Ludi H, Widmer HM (1992) Planar Chips Technology for Miniaturization and Integration of Separation Techniques into Monitoring Systems - Capillary Electrophoresis on a Chip. J Chromatogr 593:253–258

    Article  Google Scholar 

  • Manz A, Miyahara Y, Miura J, Watanabe Y, Miyagi H, Sato K (1990a) Design of an Open-tubular Column Liquid Chromatograph Using Silicon Chip Technology. Sensors and Actuators B1:249–255

    Article  Google Scholar 

  • Marras SAE, Kramer FR, Tyagi S (2002) Efficiencies of fluorescence resonance energy transfer and contact-mediated quenching in oligonucleotide probes. Nucleic Acids Res 30:e122

    Article  Google Scholar 

  • Mattila P, Korpela J, Tenkanen T, Pitkanen K (1991) Fidelity of DNA-Synthesis by the Thermococcus-Litoralis DNA- Polymerase - an Extremely Heat-Stable Enzyme with Proofreading Activity. Nucleic Acids Res 19:4967–4973

    Article  Google Scholar 

  • Mavrou A, Colialexi A, Tsangaris GT, Antsaklis A, Panagiotopoulou P, Tsenghi C, Metaxotoy C (1998) Fetal cells in maternal blood isolation by magnetic cell sorting and confirmation by immunophenotyping and FISH. In Vivo 12:195–200

    Google Scholar 

  • Miyashita N, Saito A, Kohno S, Yamaguchi K, Watanabe A, Oda H, Kazuyama Y, Matsushima T (2004) Multiplex PCR for the simultaneous detection of Chlamydia pneumoniae, Mycoplasma pneumoniae and Legionella pneumophila in community-acquired pneumonia. Respiratory Medicine 98:542–550

    Article  Google Scholar 

  • Molday RS, MacKenzie D (1982) Immunospecific ferromagnetic iron dextran reagents for the labeling and magnetic separation of cells. J Immunol Methods 52:353–367

    Article  Google Scholar 

  • Nagakura T, Maruo S, Ikuta K (2003) The study of micro blood sugar control device without energy supply for diabetes therapy. Transducers ’03 2:1209–1212

    Google Scholar 

  • Nakano H, Matsuda K, Yohda M, Nagamune T, Endo I, Yamane T (1994) High-Speed Polymerase Chain-Reaction in Constant Flow. Biosci Biotechnol Biochem 58:349–352

    Google Scholar 

  • Northrup MA, Ching MT, White RM, Watson RT (1993) DNA amplification with a microfabricated reaction chamber. Transducers ’03 924–926

    Google Scholar 

  • Northrup MA, Gonzelez C, Hadley D, Hills RF, Landre P, Lehew S, Saiki R, Sinski JJ, Watson R, Whatson J (1995) A MEMS-based miniature DNA analysis system. Transducers 95 1:746–767

    Google Scholar 

  • Obeid PJ, Christopoulos TK, Crabtree HJ, Backhouse CJ (2003) Microfabricated device for DNA and RNA amplification by continuous-flow polymerase chain reaction and reverse transcription-polymerase chain reaction with cycle number selection. Anal Chem 75:288–295

    Article  Google Scholar 

  • Oda RP, Strausbauch MA, Huhmer AFR, Borson N, Jurrens SR, Craighead J, Wettstein PJ, Eckloff B, Kline B, Landers JP (1998) Infrared-Mediated Thermocycling for Ultrafast Polymerase Chain Reaction Amplification of DNA. Anal Chem 70:4361

    Article  Google Scholar 

  • Olsvik O, Popovic T, Skjerve E, Cudjoe KS, Hornes E, Ugelstad J, Uhlen M (1994) Magnetic separation techniques in diagnostic microbiology. Clinical microbiology reviews 7:43–54

    Google Scholar 

  • Opekun AR, Abdalla N, Sutton FM, Hammond F, Kuo GM, Torres E, Steinbauer J, Graham DY (2002) Urea breath testing and analysis in the primary care office. J Fam Pract 51:1030–1032

    Google Scholar 

  • Pal D, Venkataraman V (2002) A portable battery-operated chip thermocycler based on induction heating. Sensors and Actuators A 102:151–156

    Article  Google Scholar 

  • Pollack MG, Fair RB, Shenderov AD (2000) Electro-wetting based actuation of liquid droplets for microfluidic applications. Appl Phys Lett 77:1725–1726

    Article  Google Scholar 

  • Poser S, Schulz T, Dillner U, Baier V, Kohler JM, Schimkat D, Mayer G, Siebert A (1997) Chip elements for fast thermocycling. Sens Actuator A-Phys 62:672–675

    Article  Google Scholar 

  • Powledge TM (2004) The polymerase chain reaction. Advances in Physiology Education, 28:44–50

    Article  Google Scholar 

  • Prodelalova J, Rittich B, Spanova A, Petrova K, Benes MJ (2004) Isolation of genomic DNA using magnetic cobalt ferrite and silica particles. Journal of Chromatoghraphy A 1056:43–48

    Google Scholar 

  • Rodriguez-Lazaro D, Pla M, Scortti M, Monzo HJ, Vazquez-Boland JA (2005) A novel real-time PCR for Listeria monocytogenes that monitors analytical performance via an internal amplification control. Applied and Environmental Microbiology 71:9008–9012

    Article  Google Scholar 

  • Safarikova M, Safarik I (1995) Magnetic Separations in Biosciences and Biotechnologies. Chem Listy 89:280–287

    Google Scholar 

  • Schneegaß I, Bräutigam R, Köhler JM (2001) Miniaturized flow-through PCR with different templates types in a silicon chip thermocycler. Lab Chip 1:42–49

    Article  Google Scholar 

  • Stratis-Cullum DN, Giffrin GD, Mobley J, Vass AA, Vo-Dinh T (2003) A miniature biochip for detection of aerosolized Bacillus globigii spores. Anal Chem 75:275–280

    Article  Google Scholar 

  • SuperArray–Bioscience Corporation (2004) The advantages of Hot-Start PCR technology, Newsletter – Pathway, 1(4):3.

    Google Scholar 

  • Taylor TB, Winn-Deen ES, Picozza E, Woudenberg TM, Albin M (1997) Optimization of the performance of the polymerase chain reaction in silicon-based microstructures. Nucleic Acids Res 25:3164–3168

    Article  Google Scholar 

  • Terry SC, Jerman JH, Angell JB (1979) A gas chromatographic air analyzer fabricated on a silicon wafer, I.E.E.E.Transactions on Electron Devices, ED->26:1880–86.

    Article  Google Scholar 

  • Thiel A, Scheffold A, Radbruch A (1998) Immunomagnetic cell sorting - pushing the limits. Immunotechnology 4:89–96

    Article  Google Scholar 

  • Thompson C, Loeffelholz M (1995) Detection of HIV-1 infection by polymerase chain reaction (PCR). Hotlines - University of Iowa 34:1–2

    Google Scholar 

  • Toma C, Lu Y, Higa N, Nakasone N, Chinen I, Baschkier A, Rivas M, Iwanaga M (2003) Multiplex PCR assay for identification of Human Diarrheagenic Escherichia coli. J Clin Microbiol 41:2669–2671

    Article  Google Scholar 

  • Tsai NC, Sue CY (2006) SU-8 based continuous-flow RT-PCR bio-chips under high-precision temperature control. Biosensors & Bioelectronics 22:313–317

    Article  Google Scholar 

  • Tyagi S, Kramer FR (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol 14:303–308

    Article  Google Scholar 

  • Vilkner T, Janasek D, Manz A (2004) Micro total analysis systems. Recent developments. Anal Chem 76:3373–3386

    Article  Google Scholar 

  • Wahr JA, Lau W, Tremper KK, Hallock L, Smith K (1996) Accuracy and precision of a new, portable, handheld blood gas analyzer, the IRMA(R). J Clin Monit 12:317–324

    Article  Google Scholar 

  • Walcott RR (2003) Detection of seedborne pathogens. Horttechnology 13:40–47

    Google Scholar 

  • Wallenborg SR, Bailey CG (2000) Separation and detection of explosives on a microchip using micellar electrokinetic chromatography and indirect laser- induced fluorescence. Anal Chem 72:1872–1878

    Article  Google Scholar 

  • Waters LC, Jacobson SC, Kroutchinina N, Khandurina J, Foote RS, Ramsey JM (1998) Microchip device for cell lysis, multiplex PCR amplification, and electrophoretic sizing. Anal Chem 70:158–162

    Article  Google Scholar 

  • Watson JD, Crick FHC (1953) A structure for deoxyribose nucleic acid. Nature 171:737–738

    Article  Google Scholar 

  • Whitcombe D, Theaker J, Guy SP, Brown T, Little S (1999) Detection of PCR products using self-probing amplicons and fluorescence. Nat Biotechnol 17:804–807

    Article  Google Scholar 

  • Wittwer CT, Garling DJ (1991) Rapid cycle DNA amplification: time and temperature optimization. BioTechniques 10:76–83

    Google Scholar 

  • Woolley AT, Hadley D, Landre P, de Mello AJ, Mathies RA, Northrup MA (1996) Functional Integration of PCR Amplicfication and Capillary Electrophoresis in Microfabricated DNA Analysis device. Anal Chem 68:4081

    Article  Google Scholar 

  • Wootton RCR, Fortt R, de Mello AJ (2001) On-chip generation and reaction of unstable intermediates - monolithic nanoreactors for diazonium chemistry: Azo dyes. Lab on a Chip 2:5–7

    Article  Google Scholar 

  • Xu F, Jabasini M, Baba Y (2002) DNA separation by microchip electrophoresis using low-viscosity hydroxypropylmethylcellulose-50 solutions enhanced by polyhydroxy compounds. Electrophoresis 23:3608–3614

    Article  Google Scholar 

  • Yang JN, Liu YJ, Rauch CB, Stevens RL, Liu RH, Lenigk R, Grodzinski P (2002) High sensitivity PCR assay in plastic micro reactors. Lab on a Chip 2:179–187

    Article  Google Scholar 

  • Yeung SW, Lee TMH, Cai H, Hsing IM (2006) A DNA biochip for on-the-spot multiplexed pathogen identification. Nucleic Acids Research 34

    Google Scholar 

  • Yoon DS, Lee YS, Lee YK, Cho HJ, Sung SW, Oh KW, Cha J, Lim G (2002) Precise temperature control and rapid thermal cycling in a micromachined DNA polymerase chain reaction. Journal of Micromechanics & Microengineering 12:813–823

    Article  Google Scholar 

  • Zaletaev DV, Nemtsova MV, Strelnikov VV, Babenko OV, Vasil’ev EV, Zemlyakova VV, Zhevlova AI, Drozd OV (2004) Diagnostics of epigenetics alterations in hereditary and oncological disorders. Molecular Biology 38:174–182

    Article  Google Scholar 

  • Zou Q, Miao Y, Chen Y, Sridhar U, Chong CS, Chai T, Tie Y, Teh CHL, Lim JS, Heng CK (2002) Micro-assembled multi-chamber thermal cycler for low-cost reaction chip thermal multiplexing. Sensors and Actuators A 102: 114–121

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Auroux, PA. (2008). Detection of Pathogens by On-Chip PCR. In: Zourob, M., Elwary, S., Turner, A. (eds) Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems. Springer, New York, NY. https://doi.org/10.1007/978-0-387-75113-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-75113-9_31

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-75112-2

  • Online ISBN: 978-0-387-75113-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics