Protein Microarray Technologies for Detection and Identification of Bacterial and Protein Analytes

  • Christer Wingren
  • Carl AK Borrebaeck


Protein-based microarrays is a novel, rapidly evolving proteomic technology with great potential for analysis of complex biological samples. The technology will provide miniaturized set-ups enabling us to perform multiplexed profiling of minute amounts of biological samples in a highly specific, selective, and sensitive manner. In this review, we describe the potential and specific use of protein microarray technology, including both functional protein microarrays and affinity protein microarrays, for the detection and identification of bacteria, bacterial proteins as well as bacterial diseases. To date, the first generations of a variety of set-ups, ranging from small-scale focused biosensors to large-scale semi-dense array layouts for multiplex profiling have been designed. This work has clearly outlined the potential of the technology for a broad range of applications, such as serotyping of bacteria, detection of bacteria and/or toxins, and detection of tentative diagnostic biomarkers. The use of the protein microarray technology for detection and identification of bacterial and protein analytes is likely to increase significantly in the coming years.


Antibody Array Disease State Differentiation Antibody Microarray Potential Diagnostic Marker Lectin Microarray 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Angenendt P (2005) Progress in protein and antibody microarray technology. Drug Discovery Today 10:503–511CrossRefGoogle Scholar
  2. Anjum MF, Tucker JD, Sprigings KA, Woodward MJ, Ehricht R (2006) Use of miniaturized protein arrays for Escherichia coli O serotyping. Clin Vaccine Immunol 13:561–7CrossRefGoogle Scholar
  3. Belov L, de la Vega O, dos Remedios CG, Mulligan SP, Christopherson RI (2001) Immunophenotyping of leukemias using a cluster of differentiation antibody microarray. Cancer Res 61: 4483–9Google Scholar
  4. Belov L, Huang P, Barber N, Mulligan SP, Christopherson RI (2003) Identification of repertoires of surface antigens on leukemias using an antibody microarray. Proteomics 3:2147–54CrossRefGoogle Scholar
  5. Borrebaeck CA (2006) Antibody microarray-based oncoproteomics. Expert Opin Biol Ther 6:833–8CrossRefGoogle Scholar
  6. Cai HY, Lu L, Muckle CA, Prescott JF, Chen S (2005) Development of a novel protein microarray method for serotyping Salmonella enterica strains. J Clin Microbiol 43:3427–30CrossRefGoogle Scholar
  7. Campbell CJ, O’Looney N, Chong Kwan M, Robb JS, Ross AJ, Beattie JS, Petrik J, Ghazal P (2006) Cell interaction microarray for blood phenotyping. Anal Chem 78:1930–8CrossRefGoogle Scholar
  8. Delehanty JB, Ligler FS (2002) A microarray immunoassay for simultaneous detection of proteins and bacteria. Anal Chem 74:5681–7CrossRefGoogle Scholar
  9. Deviren G, Gupta K, Paulaitis ME, Schneck JP (2007) Detection of antigen-specific T cells on p/MHC microarrays. J Mol Recognit 20:32–8CrossRefGoogle Scholar
  10. Disney MD, Seeberger PH (2004) The use of carbohydrate microarrays to study carbohydrate-cell interactions and to detect pathogens. Chem Biol 11:1701–7CrossRefGoogle Scholar
  11. Ellmark P, Belov L, Huang P, Lee CS, Solomon MJ, Morgan DK, Christopherson RI (2006a) Multiplex detection of surface molecules on colorectal cancers. Proteomics 6:1791–802CrossRefGoogle Scholar
  12. Ellmark P, Ingvarsson J, Carlsson A, Lundin SB, Wingren C, Borrebaeck CA (2006b) Identification of protein expression signatures associated with H. pylori infection and gastric adenocarcinoma using recombinant antibody microarrays. Mol Cell Proteomics 5:1638–46CrossRefGoogle Scholar
  13. Fang Y, Frutos AG, Lahiri J (2002a) Membrane protein microarrays. J Am Chem Soc 124:2394–5CrossRefGoogle Scholar
  14. Fang Y, Frutos AG, Webb B, Hong Y, Ferrie A, Lai F, Lahiri J (2002b) Membrane biochips. Biotechniques Dec Suppl:62–5Google Scholar
  15. Galindo CL, Gutierrez C Jr, Chopra AK (2006) Potential involvement of galectin-3 and SNAP23 in Aeromonas hydrophila cytotoxic enterotoxin-induced host cell apoptosis. Microb Pathog 40:56–68CrossRefGoogle Scholar
  16. Gao WM, Kuick R, Orchekowski RP, Misek DE, Qiu J, Greenberg AK, Rom WN, Brenner DE, Omenn GS, Haab BB, Hanash SM (2005) Distinctive serum protein profiles involving abundant proteins in lung cancer patients based upon antibody microarray analysis. BMC Cancer 5:110CrossRefGoogle Scholar
  17. Gehring AG, Albin DM, Bhunia AK, Reed SA, Tu SI, Uknalis J (2006) Antibody microarray detection of Escherichia coli O157:H7: quantification, assay limitations, and capture efficiency. Anal Chem 78:6601–7CrossRefGoogle Scholar
  18. Grow AE, Wood LL, Claycomb JL, Thompson PA (2003) New biochip technology for label-free detection of pathogens and their toxins. J Microbiol Methods 53:221–33CrossRefGoogle Scholar
  19. Haab BB (2001) Advances in protein microarray technology for protein expression and interaction profiling. Curr Opin Drug Discov Devel 4:116–23Google Scholar
  20. Haab BB (2003) Methods and applications of antibody microarrays in cancer research. Proteomics 3:2116–22CrossRefGoogle Scholar
  21. Haab BB (2006) Applications of antibody array platforms. Curr Opin Biotechnol 17:415–21CrossRefGoogle Scholar
  22. Hanash S (2003) Disease proteomics. Nature 422:226–32CrossRefGoogle Scholar
  23. Horn S, Lueking A, Murphy D, Staudt A, Gutjahr C, Schulte K, Konig A, Landsberger M, Lehrach H, Felix SeB, Cahill DeJ (2006) Profiling humoral autoimmune repertoire of dilated cardiomyopathy (DCM) patients and development of a disease-associated protein chip. Proteomics 6:605–613CrossRefGoogle Scholar
  24. Hsu KL, Pilobello KT, Mahal LK (2006) Analyzing the dynamic bacterial glycome with a lectin microarray approach. Nat Chem Biol 2:153–7CrossRefGoogle Scholar
  25. Huang TT, Sturgis J, Gomez R, Geng T, Bashir R, Bhunia AK, Robinson JP, Ladisch MR (2003) Composite surface for blocking bacterial adsorption on protein biochips. Biotechnol Bioeng 81:618–24CrossRefGoogle Scholar
  26. Hueber W, Kidd BA, Tomooka BH, Lee BJ, Bruce B, Fries JF, Sonderstrup G, Monach P, Drijfhout JW, van Venrooij WJ, Utz PJ, Genovese MC, Robinson WH (2005) Antigen microarray profiling of autoantibodies in rheumatoid arthritis. Arthritis Rheum 52:2645–55CrossRefGoogle Scholar
  27. Kingsmore SF (2006) Multiplexed protein measurement: technologies and applications of protein and antibody arrays. Nat Rev Drug Discov 5:310–20CrossRefGoogle Scholar
  28. Ko IK, Kato K, Iwata H (2005a) Antibody microarray for correlating cell phenotype with surface marker. Biomaterials 26:687–96CrossRefGoogle Scholar
  29. Ko IK, Kato K, Iwata H (2005b) Parallel analysis of multiple surface markers expressed on rat neural stem cells using antibody microarrays. Biomaterials 26:4882–91CrossRefGoogle Scholar
  30. LaBaer J, Ramachandran N (2005) Protein microarrays as tools for functional proteomics. Curr Opin Chem Biol 9:14–9CrossRefGoogle Scholar
  31. Li B, Jiang L, Song Q, Yang J, Chen Z, Guo Z, Zhou D, Du Z, Song Y, Wang J, Wang H, Yu S, Wang J, Yang R (2005) Protein microarray for profiling antibody responses to Yersinia pestis live vaccine. Infect Immun 73:3734–9CrossRefGoogle Scholar
  32. Ligler FS, Taitt CR, Shriver-Lake LC, Sapsford KE, Shubin Y, Golden, J.P. (2003) Array biosensor for detection of toxins. Anal Bioanal Chem 377:469–77CrossRefGoogle Scholar
  33. Livingston AD, Campbell CJ, Wagner EK, Ghazal P (2005) Biochip sensors for the rapid and sensitive detection of viral disease. Genome Biol 6:112CrossRefGoogle Scholar
  34. Lu DD, Chen SH, Zhang SM, Zhang ML, Zhang W, Bo XC, Wang SQ (2005) Screening of specific antigens for SARS clinical diagnosis using a protein microarray. Analyst 130:474–82CrossRefGoogle Scholar
  35. Lueking A, Cahill DJ, Müllner S (2005) Protein biochips: A new and versatile platform technology for molecular medicine. Drug Discovery Today 10:789–94CrossRefGoogle Scholar
  36. MacBeath G (2002) Protein microarrays and proteomics. Nat Genet 32(Suppl):526–32CrossRefGoogle Scholar
  37. MacBeath G, Schreiber SL (2000) Printing proteins as microarrays for high-throughput function determination. Science 289:1760–3Google Scholar
  38. Miller JC, Zhou H, Kwekel J, Cavallo R, Burke J, Butler EB, Teh BS, Haab BB (2003) Antibody microarray profiling of human prostate cancer sera: antibody screening and identification of potential biomarkers. Proteomics 3:56–63CrossRefGoogle Scholar
  39. Miyamoto S (2006) Clinical applications of glycomic approaches for the detection of cancer and other diseases. Curr Opin Mol Ther 8:507–13Google Scholar
  40. Oh SH, Lee SH, Kenrick SA, Daugherty PS, Soh HT (2006) Microfluidic protein detection through genetically engineered bacterial cells. J Proteome Res 5:3433–7CrossRefGoogle Scholar
  41. Pawlak M, Schick E, Bopp MA, Schneider MJ, Oroszlan P, Ehrat M (2002) Zeptosens’ protein microarrays: a novel high performance microarray platform for low abundance protein analysis. Proteomics 2:383–93CrossRefGoogle Scholar
  42. Pavlickova P, Schneider EM, Hug H (2004) Advances in recombinant antibody microarrays. Clin Chim Acta 343:17–35CrossRefGoogle Scholar
  43. Perrin A, Duracher D, Perret M, Cleuziat P, Mandrand B (2003) A combined oligonucleotide and protein microarray for the codetection of nucleic acids and antibodies associated with human immunodeficiency virus, hepatitis B virus, and hepatitis C virus infections. Anal Biochem 322:148–55CrossRefGoogle Scholar
  44. Phizicky E, Bastiaens PI, Zhu H, Snyder M, Fields S (2003) Protein analysis on a proteomic scale. Nature 422:208–15CrossRefGoogle Scholar
  45. Poetz O, Schwenk JM, Kramer S, Stoll D, Templin MF, Joos TO (2005) Protein microarrays: catching the proteome. Mech Ageing Dev 126:161–70CrossRefGoogle Scholar
  46. Pohl NL (2006) Array methodology singles out pathogenic bacteria. Nat Chem Biol 2:125–6CrossRefGoogle Scholar
  47. Robinson WH, Steinman L, Utz PJ (2003) Protein arrays for autoantibody profiling and fine-specificity mapping. Proteomics 3:2077–84CrossRefGoogle Scholar
  48. Rowe CA, Tender LM, Feldstein MJ, Golden JP, Scruggs SB, MacCraith BD, Cras JJ, Ligler FS (1999) Array biosensor for simultaneous identification of bacterial, viral, and protein analytes. Anal Chem 71:3846–52CrossRefGoogle Scholar
  49. Rowe-Taitt CA, Golden JP, Feldstein MJ, Cras JJ, Hoffman KE, Ligler FS (2000) Array biosensor for detection of biohazards. Biosens Bioelectron 14:785–94CrossRefGoogle Scholar
  50. Rubina AY, Dyukova VI, Dementieva EI, Stomakhin AA, Nesmeyanov VA, Grishin EV, Zasedatelev AS (2005) Quantitative immunoassay of biotoxins on hydrogel-based protein microchips. Anal Biochem 340:317–29CrossRefGoogle Scholar
  51. Rucker VC, Havenstrite KL, Herr AE (2005) Antibody microarrays for native toxin detection. Anal Biochem 339:262–70CrossRefGoogle Scholar
  52. Sanchez-Carbayo M, Socci ND, Lozano JJ, Haab BB, Cordon-Cardo C (2006) Profiling bladder cancer using targeted antibody arrays. Am J Pathol 168:93–103CrossRefGoogle Scholar
  53. Sartain MJ, Slayden RA, Singh KK, Laal S, Belisle JT (2006) Disease state differentiation and identification of tuberculosis biomarkers via native antigen array profiling. Mol Cell Proteomics 5:2102–13CrossRefGoogle Scholar
  54. Shriver Z, Raguram S, Sasisekharan R (2004) Glycomics: a pathway to a class of new and improved therapeutics. Nat Rev Drug Discov 3:863–73CrossRefGoogle Scholar
  55. Sreekumar A, Nyati MK, Varambally S, Barrette TR, Ghosh D, Lawrence TS, Chinnaiyan AM (2001) Profiling of cancer cells using protein microarrays: discovery of novel radiation-regulated proteins. Cancer Res 61:7585–93Google Scholar
  56. Steller S, Angenendt P, Cahill DJ, Heuberger S, Lehrach H, Kreutzberger J (2005) Bacterial protein microarrays for identification of new potential diagnostic markers for Neisseria meningitidis infections. Proteomics 5:2048–55CrossRefGoogle Scholar
  57. Stokes DL, Griffin GD, Vo-Dinh T (2001) Detection of E. coli using a microfluidics-based antibody biochip detection system. Fresenius J Anal Chem 369:295–301CrossRefGoogle Scholar
  58. Taitt CR, Anderson GP, Lingerfelt BM, Feldstein MJ, Ligler FS (2002) Nine-analyte detection using an array-based biosensor. Anal Chem 74:6114–20CrossRefGoogle Scholar
  59. Tong M, Jacobi CE, van de Rijke FM, Kuijper S, van de Werken S, Lowary TL, Hokke CH, Appelmelk BJ, Nagelkerke NJ, Tanke HJ, van Gijlswijk RP, Veuskens J, Kolk AH, Raap AK (2005) A multiplexed and miniaturized serological tuberculosis assay identifies antigens that discriminate maximally between TB and non-TB sera. J Immunol Methods 301:154–63CrossRefGoogle Scholar
  60. Uchiyama N, Kuno A, Koseki-Kuno S, Ebe Y, Horio K, Yamada M, Hirabayashi J (2006) Development of a lectin microarray based on an evanescent-field fluorescence principle. Methods Enzymol 415:341–51CrossRefGoogle Scholar
  61. Wadkins RM, Golden JP, Pritsiolas LM, Ligler FS (1998) Detection of multiple toxic agents using a planar array immunosensor. Biosens Bioelectron 13:407–15CrossRefGoogle Scholar
  62. Wingren C, Borrebaeck C (2006a) Antibody microarrays—current status and key technological advances. OMICS 10:411–427CrossRefGoogle Scholar
  63. Wingren C, Borrebaeck C (2006b) Recombinant antibody microarrays. Screening. Trends in Drug Discovery 2:13–15Google Scholar
  64. Wingren C, Borrebaeck CA (2004) High-throughput proteomics using antibody microarrays. Expert Rev Proteomics 1:355–64CrossRefGoogle Scholar
  65. Wingren C, Ingvarsson J, Dexlin L, Szul D, Borrebaeck CA (2006) Design of recombinant antibody microarrays for complex proteome analysis: choice of sample labeling-tag and solid support. (submitted)Google Scholar
  66. Wingren C, Ingvarsson J, Lindstedt M, Borrebaeck CA (2003) Recombinant antibody microarrays—a viable option? Nat Biotechnol 21:223CrossRefGoogle Scholar
  67. Wingren C, Steinhauer C, Ingvarsson J, Persson E, Larsson K, Borrebaeck CA (2005) Microarrays based on affinity-tagged single-chain Fv antibodies: sensitive detection of analyte in complex proteomes. Proteomics 5:1281–91CrossRefGoogle Scholar
  68. Yanagida M (2002) Functional proteomics: current achievements. J Chromatogr B Analyt Technol Biomed Life Sci 771:89–106CrossRefGoogle Scholar
  69. Yuk CS, Lee HK, Kim HT, Choi YK, Lee BC, Chun BH, Chung N (2004) Development and evaluation of a protein microarray chip for diagnosis of hepatitis C virus. Biotechnol Lett 26:1563–8CrossRefGoogle Scholar
  70. Zhu H, Bilgin M, Bangham R, Hall D, Casamayor A, Bertone P, Lan N, Jansen R, Bidlingmaier S, Houfek T, Mitchell T, Miller P, Dean RA, Gerstein M, Snyder M (2001) Global analysis of protein activities using proteome chips. Science 293:2101–5CrossRefGoogle Scholar
  71. Zhu H, Bilgin M, Snyder M (2003) Proteomics. Annu Rev Biochem 72:783–812CrossRefGoogle Scholar
  72. Zhu H, Hu S, Jona G, Zhu X, Kreiswirth N, Willey BM, Mazzulli T, Liu G, Song Q, Chen P, Cameron M, Tyler A, Wang J, Wen J, Chen W, Compton S, Snyder M (2006) Severe acute respiratory syndrome diagnostics using a coronavirus protein microarray. Proc Natl Acad Sci U S A 103:4011–6CrossRefGoogle Scholar
  73. Zhu H, Klemic JF, Chang S (2000) Analysis of yeast protein kinases using protein chips. Nature Genetics 26:283–290CrossRefGoogle Scholar
  74. Zhu H, Snyder M (2003) Protein chip technology. Curr Opin Chem Biol 7:55–63CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Christer Wingren
    • 1
  • Carl AK Borrebaeck
    • 2
  1. 1.Department of ImmunotechnologyLund UniversityLundSweden
  2. 2.CREATE HealthLund UniversityLundSweden

Personalised recommendations