Aptamers and Their Potential as Recognition Elements for the Detection of Bacteria

  • Casey C. Fowler
  • Naveen K. Navani
  • Eric D. Brown
  • Yingfu Li


DNA and RNA are well-known polymers that are central to the existence of every known form of life. Once thought to be strictly passive templates containing genetic information, it has since become clear that these nucleic acids are capable of much more. Synthetic biologists are working to exploit this potential, creating a wide spectrum of “functional nucleic acids”. These molecules can be divided into two broad categories: catalysts (deoxyribozymes and ribozymes) and receptors (aptamers). This chapter begins by providing a background on the field of functional nucleic acids with an emphasis on aptamer technology. One major application of aptamers is their use as recognition elements in sensors of interesting molecules and cell types. Some common designs of these sensors are profiled, explaining how the aptamer-target binding is converted into a detectable signal. The chapter concludes with a discussion of aptamer-based sensors of bacteria, including some of the relevant targets, the progress to date and the future prospects.


Fluorescent Resonance Energy Transfer Recognition Element Proximity Ligation Assay Francisella Tularensis Aptamer Selection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams PL, Stahley MR, Kosek AB, Wang J and Strobel SA (2004) Crystal structure of a self-splicing group I intron with both exons. Nature 430:45–50CrossRefGoogle Scholar
  2. Allen P, Worland S and Gold L (1995) Isolation of high-affinity RNA ligands to HIV-1 integrase from a random pool. Virology 209:327–336CrossRefGoogle Scholar
  3. Bang GS, Cho S and Kim BG (2005) A novel electrochemical detection method for aptamer biosensors. Biosens Bioelectron 21:863–870CrossRefGoogle Scholar
  4. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297CrossRefGoogle Scholar
  5. Bartel DP and Szostak JW (1993) Isolation of new ribozymes from a large pool of random sequences. Science 261:1411–1418CrossRefGoogle Scholar
  6. Beaudry AA, and Joyce, G. F. 1992. Directed evolution of an RNA enzyme. Science 257:635–641CrossRefGoogle Scholar
  7. Bellecave P, Andreola ML, Ventura M, Tarrago-Litvak L, Litvak S and Astier-Gin T (2003) Selection of DNA aptamers that bind the RNA-dependent RNA polymerase of hepatitis C virus and inhibit viral RNA synthesis in vitro. Oligonucleotides 13:455–463CrossRefGoogle Scholar
  8. Berezovski M, Drabovich A, Krylova SM, Musheev M, Okhonin V, Petrov A and Krylov SN (2005) Nonequilibrium capillary electrophoresis of equilibrium mixtures: a universal tool for development of aptamers. J Am Chem Soc 127:3165–3171CrossRefGoogle Scholar
  9. Bock LC, Griffin LC, Latham JA, Vermaas EH and Toole JJ (1992) Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 355:564–566CrossRefGoogle Scholar
  10. Bossi P, Garin D, Guihot A, Gay F, Crance JM, Debord T, Autran B and Bricaire F (2006) Bioterrorism: management of major biological agents. Cell Mol Life Sci 63:2196–2212CrossRefGoogle Scholar
  11. Breaker RR and Joyce GF (1994) A DNA enzyme that cleaves RNA. Chem Biol 1:223–229CrossRefGoogle Scholar
  12. Brody EN and Gold L (2000) Aptamers as therapeutic and diagnostic agents. J Biotechnol 74:5–13Google Scholar
  13. Bruno JG and Kiel JL (1999) In vitro selection of DNA aptamers to anthrax spores with electrochemiluminescence detection. Biosens Bioelectron 14:457–464CrossRefGoogle Scholar
  14. Bunka DH and Stockley PG (2006) Aptamers come of age - at last. Nat Rev Microbiol 4:588–596CrossRefGoogle Scholar
  15. Burgstaller P and Famulok M (1994) Isolation of RNA aptamers for biological cofactors by in vitro selection. Angew. Chem. Int. Ed. Engl. 33:1084–1087CrossRefGoogle Scholar
  16. Cate JH, Gooding AR, Podell E, Zhou K, Golden BL, Kundrot CE, Cech TR and Doudna JA (1996) Crystal structure of a group I ribozyme domain: principles of RNA packing. Science 273:1678–1685CrossRefGoogle Scholar
  17. Cerchia L, Duconge F, Pestourie C, Boulay J, Aissouni Y, Gombert K, Tavitian B, de Franciscis V and Libri D (2005) Neutralizing aptamers from whole-cell SELEX inhibit the RET receptor tyrosine kinase. PLoS Biol 3:e123CrossRefGoogle Scholar
  18. Cerchia L, Hamm J, Libri D, Tavitian B and de Franciscis V (2002) Nucleic acid aptamers in cancer medicine. FEBS Lett 528:12–16CrossRefGoogle Scholar
  19. Chiuman W and Li Y (2006) Evolution of high-branching deoxyribozymes from a catalytic DNA with a three-way junction. Chem Biol 13:1061–1069CrossRefGoogle Scholar
  20. Cote CK, Rossi CA, Kang AS, Morrow PR, Lee JS and Welkos SL (2005) The detection of protective antigen (PA) associated with spores of Bacillus anthracis and the effects of anti-PA antibodies on spore germination and macrophage interactions. Microb Pathog 38:209–225CrossRefGoogle Scholar
  21. Daniels DA, Chen H, Hicke BJ, Swiderek KM and Gold L (2003) A tenascin-C aptamer identified by tumor cell SELEX: systematic evolution of ligands by exponential enrichment. Proceedings of the National Academy of Sciences 100:15416–15421CrossRefGoogle Scholar
  22. Deng Q, German I, Buchanan D and Kennedy RT (2001) Retention and separation of adenosine and analogues by affinity chromatography with an aptamer stationary phase. Anal Chem 73:5415–5421CrossRefGoogle Scholar
  23. Deng Q, Watson CJ and Kennedy RT (2003) Aptamer affinity chromatography for rapid assay of adenosine in microdialysis samples collected in vivo. J Chromatogr A 1005:123–130CrossRefGoogle Scholar
  24. Drolet DW, Moon-McDermott L and Romig TS (1996) An enzyme-linked oligonucleotide assay. Nat Biotechnol 14:1021–1025CrossRefGoogle Scholar
  25. Dwarakanath S, Bruno JG, Shastry A, Phillips T, John AA, Kumar A and Stephenson LD (2004) Quantum dot-antibody and aptamer conjugates shift fluorescence upon binding bacteria. Biochem Biophys Res Commun 325:739–743CrossRefGoogle Scholar
  26. Dyke CK, Steinhubl SR, Kleiman NS, Cannon RO, Aberle LG, Lin M, Myles SK, Melloni C, Harrington RA, Alexander JH, Becker RC and Rusconi CP (2006) First-in-human experience of an antidote-controlled anticoagulant using RNA aptamer technology: a phase 1a pharmacodynamic evaluation of a drug-antidote pair for the controlled regulation of factor IXa activity. Circulation 114:2490–2497CrossRefGoogle Scholar
  27. Eddy SR (1999) Noncoding RNA genes. Curr Opin Genet Dev 9:695–699CrossRefGoogle Scholar
  28. Edwards KA, Clancy HA and Baeumner AJ (2006) Bacillus anthracis: toxicology, epidemiology and current rapid-detection methods. Anal Bioanal Chem 384:73–84CrossRefGoogle Scholar
  29. Ellington AD and Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822CrossRefGoogle Scholar
  30. Ellington AD and Szostak JW (1992) Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures. Nature 355:850–852CrossRefGoogle Scholar
  31. Erdmann VA, Barciszewska MZ, Hochberg A, de Groot N and Barciszewski J (2001) Regulatory RNAs. Cell Mol Life Sci 58:960–977CrossRefGoogle Scholar
  32. Famulok M and Mayer G (1999) Aptamers as tools in molecular biology and immunology. Curr Top Microbiol Immunol 243:123–136Google Scholar
  33. Fan P, Suri AK, Fiala R, Live D and Patel DJ (1996) Molecular recognition in the FMN-RNA aptamer complex. J Mol Biol 258:480–500CrossRefGoogle Scholar
  34. Fang X, Cao Z, Beck T and Tan W (2001) Molecular aptamer for real-time oncoprotein platelet-derived growth factor monitoring by fluorescence anisotropy. Anal Chem 73:5752–5757CrossRefGoogle Scholar
  35. Feigon J, Dieckmann T and Smith FW (1996) Aptamer structures from A to zeta. Chem Biol 3:611–617CrossRefGoogle Scholar
  36. Ferreira CS, Matthews CS and Missailidis S (2006) DNA aptamers that bind to MUC1 tumour marker: design and characterization of MUC1-binding single-stranded DNA aptamers. Tumour Biol 27:289–301CrossRefGoogle Scholar
  37. Fiammengo R and Jaschke A (2005) Nucleic acid enzymes. Curr Opin Biotechnol 16:614–621Google Scholar
  38. Fredriksson S, Gullberg M, Jarvius J, Olsson C, Pietras K, Gustafsdottir SM, Ostman A and Landegren U (2002) Protein detection using proximity-dependent DNA ligation assays. Nat Biotechnol 20:473–477CrossRefGoogle Scholar
  39. Geiger A, Burgstaller P, von der Eltz H, Roeder A and Famulok M (1996) RNA aptamers that bind L-arginine with sub-micromolar dissociation constants and high enantioselectivity. Nucleic Acids Res 24:1029–1036CrossRefGoogle Scholar
  40. Gokulrangan G, Unruh JR, Holub DF, Ingram B, Johnson CK and Wilson GS (2005) DNA aptamer-based bioanalysis of IgE by fluorescence anisotropy. Anal Chem 77:1963–1970CrossRefGoogle Scholar
  41. Golden MC, Collins BD, Willis MC and Koch TH (2000). Diagnostic potential of PhotoSELEX-evolved ssDNA aptamers. J Biotechnol 81:167–178CrossRefGoogle Scholar
  42. Gomez J, Nadal A, Sabariegos R, Beguiristain N, Martell M and Piron M (2004) Three properties of the hepatitis C virus RNA genome related to antiviral strategies based on RNA-therapeutics: variability, structural conformation and tRNA mimicry. Curr Pharm Des 10:3741–3756CrossRefGoogle Scholar
  43. Goodman SD, Velten NJ, Gao Q, Robinson S and Segall AM (1999) In vitro selection of integration host factor binding sites. J Bacteriol 181:3246–3255Google Scholar
  44. Gopinath SC, Balasundaresan D, Akitomi J and Mizuno H (2006a) An RNA aptamer that discriminates bovine factor IX from human factor IX. J Biochem (Tokyo) 140:667–676Google Scholar
  45. Gopinath SC, Misono TS, Kawasaki K, Mizuno T, Imai M, Odagiri T and Kumar PK (2006b) An RNA aptamer that distinguishes between closely related human influenza viruses and inhibits haemagglutinin-mediated membrane fusion. J Gen Virol 87:479–487CrossRefGoogle Scholar
  46. Gragoudas ES, Adamis AP, Cunningham Jr. ET, Feinsod M and Guyer DR (2004) Pegaptanib for neovascular age-related macular degeneration. N Engl J Med 351:2805–2816CrossRefGoogle Scholar
  47. Green LS, Jellinek D, Bell C, Beebe LA, Feistner BD, Gill SC, Jucker FM and Janjic N (1995) Nuclease-resistant nucleic acid ligands to vascular permeability factor/vascular endothelial growth factor. Chem Biol 2:683–695CrossRefGoogle Scholar
  48. Green R, Ellington AD, Bartel DP and Szostak JW (1991) In vitro genetic analysis: Selection and amplification of rare functional nucleic acids. Methods 2:75–86CrossRefGoogle Scholar
  49. Gronewold TM, Glass S, Quandt E and Famulok M (2005) Monitoring complex formation in the blood-coagulation cascade using aptamer-coated SAW sensors. Biosens Bioelectron 20:2044–2052CrossRefGoogle Scholar
  50. Grunow R, Splettstoesser W, McDonald S, Otterbein C, O’ Brien T, Morgan C, Aldrich J, Hofer E, Finke EJ and Meyer H (2000) Detection of Francisella tularensis in biological specimens using a capture enzyme-linked immunosorbent assay, an immunochromatographic handheld assay, and a PCR. Clin Diagn Lab Immunol 7:86–90Google Scholar
  51. Guo KT, SchAfer R, Paul A, Gerber A, Ziemer G and Wendel HP (2006) A new technique for the isolation and surface immobilization of mesenchymal stem cells from whole bone marrow using high-specific DNA aptamers. Stem Cells 24:2220–2231CrossRefGoogle Scholar
  52. Gustafsdottir SM, Schallmeiner E, Fredriksson S, Gullberg M, Soderberg O, Jarvius M, Jarvius J, Howell M and Landegren U (2005) Proximity ligation assays for sensitive and specific protein analyses. Anal Biochem 345:2–9CrossRefGoogle Scholar
  53. Guthrie JW, Hamula CL, Zhang H and Le XC (2006) Assays for cytokines using aptamers. Methods 38:324–330CrossRefGoogle Scholar
  54. Hermann T and Patel DJ (2000) Adaptive recognition by nucleic acid aptamers. Science 287:820–825CrossRefGoogle Scholar
  55. Homann M, Lorger M, Engstler M, Zacharias M and Goringer HU (2006) Serum-stable RNA aptamers to an invariant surface domain of live African trypanosomes. Comb Chem High Throughput Screen 9:491–499CrossRefGoogle Scholar
  56. Huang XZ, Nikolich MP and Lindler LE (2006) Current trends in plague research: from genomics to virulence. Clin Med Res 4:189–199CrossRefGoogle Scholar
  57. Huizenga DE and Szostak JW (1995) A DNA aptamer that binds adenosine and ATP. Biochemistry 34:656–665CrossRefGoogle Scholar
  58. Jellinek D, Green LS, Bell C, Lynott CK, Gill N, Vargeese C, Kirschenheuter G, McGee DP, Abesinghe P, Pieken WA and et al. (1995) Potent 2-amino-2-deoxypyrimidine RNA inhibitors of basic fibroblast growth factor. Biochemistry 34:11363–11372CrossRefGoogle Scholar
  59. Jenison RD, Gill SC, Pardi A and Polisky B (1994) High-resolution molecular discrimination by RNA. Science 263:1425–1429CrossRefGoogle Scholar
  60. Jeong S, Eom T, Kim S, Lee S and Yu J (2001) In vitro selection of the RNA aptamer against the Sialyl Lewis X and its inhibition of the cell adhesion. Biochem Biophys Res Commun 281:237–243CrossRefGoogle Scholar
  61. Jiang F, Kumar RA, Jones RA and Patel DJ (1996) Structural basis of RNA folding and recognition in an AMP-RNA aptamer complex. Nature 382:183–186CrossRefGoogle Scholar
  62. Kallioniemi OP, Wagner U, Kononen J and Sauter G (2001) Tissue microarray technology for high-throughput molecular profiling of cancer. Hum Mol Genet 10:657–662CrossRefGoogle Scholar
  63. Kobiler D, Weiss S, Levy H, Fisher M, Mechaly A, Pass A and Altboum Z (2006) Protective antigen as a correlative marker for anthrax in animal models. Infect Immun 74:5871–5876CrossRefGoogle Scholar
  64. Laber DA, Sharma VR, Bhupalam L, Taft B, Hendler FJ and Barnhart KM (2005) Update on the first phase I study of AGRO100 in advanced cancer. J Clin Oncol 23 (June 1 Supplement, 2005 ASCO Annual Meeting Proceedings):3064Google Scholar
  65. Lai RY, Plaxco KW and Heeger AJ (2007) Aptamer-based electrochemical detection of picomolar platelet-derived growth factor directly in blood serum. Anal Chem 79:229–233CrossRefGoogle Scholar
  66. Lakowicz JR (1999) Principles of Fluorescence Spectroscopy, 2nd Ed. Kluwer Academic/Plenum Press, New YorkGoogle Scholar
  67. Landers JP (1996) Handbook of Capillary Electrophoresis, 2nd Ed. CRC Press Inc., Boca Raton, FloridaGoogle Scholar
  68. Latham JA, Johnson R and Toole JJ (1994) The application of a modified nucleotide in aptamer selection: novel thrombin aptamers containing 5-(1-pentynyl)-2-deoxyuridine. Nucleic Acids Res 22:2817–2822CrossRefGoogle Scholar
  69. Lauhon CT and Szostak JW (1995) RNA aptamers that bind flavin and nicotinamide redox cofactors. J Am Chem Soc 117:1246–1257CrossRefGoogle Scholar
  70. Le Floch F, Ho HA and Leclerc M (2006) Label-free electrochemical detection of protein based on a ferrocene-bearing cationic polythiophene and aptamer. Anal Chem 78:4727–4731CrossRefGoogle Scholar
  71. Lee JF, Hesselberth JR, Meyers LA and Ellington AD (2004) Aptamer database. Nucleic Acids Res 32:D95–100CrossRefGoogle Scholar
  72. Lee JF, Stovall GM and Ellington AD (2006) Aptamer therapeutics advance. Curr Opin Chem Biol 10:282–289CrossRefGoogle Scholar
  73. Lee JH, Canny MD, De Erkenez A, Krilleke D, Ng YS, Shima DT, Pardi A and Jucker F (2005) A therapeutic aptamer inhibits angiogenesis by specifically targeting the heparin binding domain of VEGF165. Proceedings of the National Academy of Science 102:18902–18907CrossRefGoogle Scholar
  74. Levy M, Cater SF and Ellington AD (2005) Quantum-dot aptamer beacons for the detection of proteins. Chembiochem 6:2163–2166CrossRefGoogle Scholar
  75. Li JJ, Fang X and Tan W (2002) Molecular aptamer beacons for real-time protein recognition. Biochem Biophys Res Commun 292:31–40CrossRefGoogle Scholar
  76. Li Y and Breaker RR (1999a) Kinetics of RNA degradation by specific base catalysis of transesterification involving the 2-hydroxyl group. J Am Chem Soc 121:5364–5372CrossRefGoogle Scholar
  77. Li Y and Breaker RR (1999b) Phosphorylating DNA with DNA. Proceedings of the National Academy of Science 96:2746–2751CrossRefGoogle Scholar
  78. Li Y and Sen D (1996) A catalytic DNA for porphyrin metallation. Nat Struct Biol 3:743–747CrossRefGoogle Scholar
  79. Lim DV, Simpson JM, Kearns EA and Kramer MF (2005) Current and developing technologies for monitoring agents of bioterrorism and biowarfare. Clin Microbiol Rev 18:583–607CrossRefGoogle Scholar
  80. Lin CH and Patel DJ (1997) Structural basis of DNA folding and recognition in an AMP-DNA aptamer complex: distinct architectures but common recognition motifs for DNA and RNA aptamers complexed to AMP. Chem Biol 4:817–832CrossRefGoogle Scholar
  81. Lindstrom M and Korkeala H (2006) Laboratory diagnostics of botulism. Clin Microbiol Rev 19:298–314CrossRefGoogle Scholar
  82. Lozupone C, Changayil S, Majerfeld I and Yarus M (2003) Selection of the simplest RNA that binds isoleucine. Rna 9:1315–1322CrossRefGoogle Scholar
  83. Majerfeld I and Yarus M (1994) An RNA pocket for an aliphatic hydrophobe. Nat Struct Biol 1:287–292CrossRefGoogle Scholar
  84. Majerfeld I and Yarus M (1998) Isoleucine:RNA sites with associated coding sequences. RNA 4:471–478Google Scholar
  85. Mandal M and Breaker RR (2004) Adenine riboswitches and gene activation by disruption of a transcription terminator. Nat Struct Mol Biol 11:29–35CrossRefGoogle Scholar
  86. McCauley TG, Kurz JC, Merlino PG, Lewis SD, Gilbert M, Epstein DM and Marsh HN (2006) Pharmacologic and pharmacokinetic assessment of anti-TGFbeta2 aptamers in rabbit plasma and aqueous humor. Pharm Res 23:303–311CrossRefGoogle Scholar
  87. McLendon MK, Apicella MA and Allen LA (2006) Francisella tularensis: taxonomy, genetics, and Immunopathogenesis of a potential agent of biowarfare. Annu Rev Microbiol 60:167–185CrossRefGoogle Scholar
  88. Mei SH, Liu Z, Brennan JD and Li Y (2003) An efficient RNA-cleaving DNA enzyme that synchronizes catalysis with fluorescence signaling. J Am Chem Soc 125:412–420CrossRefGoogle Scholar
  89. Mendonsa SD and Bowser MT (2004) In vitro evolution of functional DNA using capillary electrophoresis. J Am Chem Soc 126:20–21CrossRefGoogle Scholar
  90. Michaud M, Jourdan E, Villet A, Ravel A, Grosset C and Peyrin E (2003) A DNA aptamer as a new target-specific chiral selector for HPLC. J Am Chem Soc 125:8672–8679CrossRefGoogle Scholar
  91. Montange RK and Batey RT (2006) Structure of the S-adenosylmethionine riboswitch regulatory mRNA element. Nature 441:1172–1175CrossRefGoogle Scholar
  92. Navani NK and Li Y (2006) Nucleic acid aptamers and enzymes as sensors. Curr Opin Chem Biol 10:272–281CrossRefGoogle Scholar
  93. Ng EW, Shima DT, Calias P, Cunningham Jr. ET, Guyer DR and Adamis AP (2006) Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov 5:123–132CrossRefGoogle Scholar
  94. Nimjee SM, Rusconi CP and Sullenger BA (2005) Aptamers: an emerging class of therapeutics. Annu Rev Med 56:555–583CrossRefGoogle Scholar
  95. Nutiu R and Li Y (2003) Structure-switching signaling aptamers. J Am Chem Soc 125:4771–4778CrossRefGoogle Scholar
  96. Nutiu R and Li Y (2004) Structure-switching signaling aptamers: transducing molecular recognition into fluorescence signaling. Chemistry 10:1868–1876CrossRefGoogle Scholar
  97. Nutiu R and Li Y (2005a) Aptamers with fluorescence-signaling properties. Methods 37:16–25CrossRefGoogle Scholar
  98. Nutiu R and Li Y (2005b) In vitro selection of structure-switching signaling aptamers. Angew Chem Int Ed Engl 44:1061–1065CrossRefGoogle Scholar
  99. Osborne SE, Matsumura I and Ellington AD (1997) Aptamers as therapeutic and diagnostic reagents: problems and prospects. Curr Opin Chem Biol 1:5–9CrossRefGoogle Scholar
  100. Padmanabhan K, Padmanabhan KP, Ferrara JD, Sadler JE and Tulinsky A (1993) The structure of alpha-thrombin inhibited by a 15-mer single-stranded DNA aptamer. J Biol Chem 268:17651–17654Google Scholar
  101. Pagratis NC, Bell C, Chang YF, Jennings S, Fitzwater T, Jellinek D and Dang C (1997) Potent 2-amino-, and 2-fluoro-2-deoxyribonucleotide RNA inhibitors of keratinocyte growth factor. Nat Biotechnol 15:68–73CrossRefGoogle Scholar
  102. Pappas G, Panagopoulou P, Christou L and Akritidis N (2006) Brucella as a biological weapon. Cell Mol Life Sci 63:2229–2236CrossRefGoogle Scholar
  103. Patel DJ and Suri AK (2000) Structure, recognition and discrimination in RNA aptamer complexes with cofactors, amino acids, drugs and aminoglycoside antibiotics. J Biotechnol 74:39–60Google Scholar
  104. Potyrailo RA, Conrad RC, Ellington AD and Hieftje GM (1998) Adapting selected nucleic acid ligands (aptamers) to biosensors. Anal Chem 70:3419–3425CrossRefGoogle Scholar
  105. Romig TS, Bell C and Drolet DW (1999) Aptamer affinity chromatography: combinatorial chemistry applied to protein purification. J Chromatogr B Biomed Sci Appl 731:275–284CrossRefGoogle Scholar
  106. Ruckman J, Green LS, Beeson J, Waugh S, Gillette WL, Henninger DD, Claesson-Welsh L and Janjic N (1998) 2-Fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF165). Inhibition of receptor binding and VEGF-induced vascular permeability through interactions requiring the exon 7-encoded domain. J Biol Chem 273:20556–20567CrossRefGoogle Scholar
  107. Rupert PB, Massey AP, Sigurdsson ST and Ferre-D’Amare AR (2002) Transition state stabilization by a catalytic RNA. Science 298:1421–1424CrossRefGoogle Scholar
  108. Rusconi CP, Roberts JD, Pitoc GA, Nimjee SM, White RR, Quick Jr. G, Scardino E, Fay WP and Sullenger BA (2004) Antidote-mediated control of an anticoagulant aptamer in vivo. Nat Biotechnol 22:1423–1428CrossRefGoogle Scholar
  109. Rusconi CP, Scardino E, Layzer J, Pitoc GA, Ortel TL, Monroe D and Sullenger BA (2002) RNA aptamers as reversible antagonists of coagulation factor IXa. Nature 419:90–94CrossRefGoogle Scholar
  110. Sambrook J and Russell DW (2001) Molecular Cloning - A Laboratory Manual, 3rd ed. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  111. Santoro SW and Joyce GF (1997). A general purpose RNA-cleaving DNA enzyme. Proceedings of the National Academy of Science 94:4262–4266CrossRefGoogle Scholar
  112. Savran CA, Knudsen SM, Ellington AD and Manalis SR (2004) Micromechanical detection of proteins using aptamer-based receptor molecules. Anal Chem 76:3194–3198CrossRefGoogle Scholar
  113. Seiwert SD, Stines Nahreini T, Aigner S, Ahn NG and Uhlenbeck OC (2000) RNA aptamers as pathway-specific MAP kinase inhibitors. Chem Biol 7:833–843CrossRefGoogle Scholar
  114. Serganov A, Polonskaia A, Phan AT, Breaker RR and Patel DJ (2006) Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch. Nature 441:1167–1171CrossRefGoogle Scholar
  115. Shangguan D, Li Y, Tang Z, Cao ZC, Chen HW, Mallikaratchy P, Sefah K, Yang CJ and Tan W (2006) Aptamers evolved from live cells as effective molecular probes for cancer study. Proceedings of the National Academy of Science 103:11838–11843CrossRefGoogle Scholar
  116. Siddiqui MA and Keating GM (2005) Pegaptanib: in exudative age-related macular degeneration. Drugs 65:1571–1577; discussion 1578–1579CrossRefGoogle Scholar
  117. Sobel J (2005) Botulism. Clin Infect Dis 41:1167–1173CrossRefGoogle Scholar
  118. Stojanovic MN, de Prada P and Landry DW (2001) Aptamer-based folding fluorescent sensor for cocaine. J Am Chem Soc 123:4928–4931CrossRefGoogle Scholar
  119. Storz G (2002) An expanding universe of noncoding RNAs. Science 296:1260–1263CrossRefGoogle Scholar
  120. Swartz MN (2001) Recognition and management of anthrax–an update. N Engl J Med 345:1621–1626CrossRefGoogle Scholar
  121. Tarasow TM, Tarasow SL and Eaton BE (1997) RNA-catalysed carbon-carbon bond formation. Nature 389:54–57Google Scholar
  122. Tuerk C and Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510CrossRefGoogle Scholar
  123. Tuerk C, MacDougal S and Gold L (1992) RNA pseudoknots that inhibit human immunodeficiency virus type 1 reverse transcriptase. Proceedings of the National Academy of Science 89:6988–6992CrossRefGoogle Scholar
  124. Vivekananda J and Kiel JL (2006) Anti-Francisella tularensis DNA aptamers detect tularemia antigen from different subspecies by Aptamer-Linked Immobilized Sorbent Assay. Lab Invest 86:610–618Google Scholar
  125. Wallis MG, von Ahsen U, Schroeder R and Famulok M (1995) A novel RNA motif for neomycin recognition. Chem Biol 2:543–552CrossRefGoogle Scholar
  126. White R, Rusconi C, Scardino E, Wolberg A, Lawson J, Hoffman M and Sullenger B (2001) Generation of species cross-reactive aptamers using “toggle” SELEX. Mol Ther 4:567–573CrossRefGoogle Scholar
  127. Wilson C and Szostak JW (1995) In vitro evolution of a self-alkylating ribozyme. Nature 374:777–782CrossRefGoogle Scholar
  128. Wilson DS and Szostak JW (1999) In vitro selection of functional nucleic acids. Annu Rev Biochem 68:611–647CrossRefGoogle Scholar
  129. Winkler WC and Breaker RR (2005) Regulation of bacterial gene expression by riboswitches. Annu Rev Microbiol 59:487–517CrossRefGoogle Scholar
  130. Xu D, Yu X, Liu Z, He W and Ma Z (2005) Label-free electrochemical detection for aptamer-based array electrodes. Anal Chem 77:5107–5113CrossRefGoogle Scholar
  131. Yang Y, Kochoyan M, Burgstaller P, Westhof E and Famulok M (1996) Structural basis of ligand discrimination by two related RNA aptamers resolved by NMR spectroscopy. Science 272:1343–1347CrossRefGoogle Scholar
  132. Zhang B and Cech TR (1997) Peptide bond formation by in vitro selected ribozymes. Nature 390:96–100CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Casey C. Fowler
    • 1
  • Naveen K. Navani
    • 1
  • Eric D. Brown
    • 1
  • Yingfu Li
    • 1
  1. 1.Department of Biochemistry and Biomedical Sciences and Department of ChemistryMcMaster UniversityHamiltonCanada

Personalised recommendations