Label-Free Fingerprinting of Pathogens by Raman Spectroscopy Techniques

  • Ann E. Grow


Raman spectroscopy is a label-free technique for generating unique spectral fingerprints from intact microorganisms. Studies conducted for more than a decade have shown that these “whole-organism fingerprints” can be used to identify pathogens, including bacteria, yeasts, and spores, at the strain level, even when the microorganisms are so closely related that they are difficult to distinguish by conventional techniques. Emerging techniques such as Raman microscopy and surface-enhanced Raman scattering (SERS) can enhance the magnitude of the signal to the point that Raman fingerprinting can achieve single-cell sensitivity. More recently, Raman microscopy and SERS have been integrated with biomolecule capture to produce a new microarray technology, dubbed “microSERS,” for rapid identification of pathogens and their toxins in complex samples, without any labels, pre-processing of the sample, or culturing. This chapter reviews the studies that have been done on Raman microscopy and SERS for pathogen identification, and innovative methods for sample collection, concentration, and manipulation that can be combined with fingerprinting techniques. It also presents recent progress on microSERS analysis for the identification of bacteria, spores, and toxins in complex samples; differentiation between viable and nonviable microorganisms; and evaluation of growth conditions on microbial phenotype and specificity/affinity for capture biomolecules.


Surface Enhance Raman Scattering Listeria Monocytogenes Raman Microscopy Bacillus Spore Surface Enhance Raman Scattering Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alekseev AN, Karabanova LN, Krainova OA, Krasov ES and Kashparova EV (1985) Amino acid and mineral element content and the activity of various enzymes in germinating spores of Bacillus thuringiensis. Mikrobiologiia 54(2):181–185Google Scholar
  2. Alexander TA, Pellegrino PM and Gillespie JB (2003) Near-infrared surface-enhanced-Raman-scattering-mediated detection of single optically trapped bacterial spores. Appl. Spectrosc. 57(11):1340–1345CrossRefGoogle Scholar
  3. Annous BA, Becker LA, Bayles DO, Labeda DP and Wilkinson BJ (1997) Critical role of anteiso-C15:0 fatty acid in the growth of Listeria monocytogenes at low temperatures. Appl. Environ. Microbiol. 63(10):3887–3894Google Scholar
  4. Basher HA, Fowler DR, Rodgers FG, Seaman A and Woodbine M (1984) Role of haemolysin and temperature in the pathogenesis of Listeria monocytogenes in fertile hens’ eggs. Zentralbl. Bakteriol. Mikrobiol. Hyg. [A] 258(2–3):223–231Google Scholar
  5. Beaman TC and Gerhardt P (1986) Heat resistance of bacterial spores correlated with protoplast dehydration, mineralization, and thermal adaptation. Appl. Environ. Microbiol. 52:1242–1246Google Scholar
  6. Beaman TC, Koshikawa T, Pankratz HS and Gerhardt P (1984) Dehydration partitioned within core protoplast accounts for heat resistance of bacterial spores. FEMS Microbiol. Lett. 24:47–51CrossRefGoogle Scholar
  7. Bekhtereva MN, Marchenko IV, Galanina LA and Loginova ON (1975) Change in Bacillus anthracoides spores and their content of dipicolinic acid during germination. Mikrobiologiia 44(2):233–236Google Scholar
  8. Berger AJ and Zhu Q (2003) Identification of oral bacteria by Raman microspectroscopy. J. Modern Opt. 50(15-17):2375–2380CrossRefGoogle Scholar
  9. Boschwitz H, Gofshtein-Gandman L, Halvorson HO, Keynan A and Milner Y (1991) The possible involvement of trypsin-like enzymes in germination of spores of Bacillus cereus T and Bacillus subtilis 168. J. Gen. Microbiol. 137(Pt 5):1145–1153Google Scholar
  10. Buttingsrud B and Alsberg BK (2004) A new maximum entropy-based method for deconvolution of spectra with heteroscedastic noise. J. Chemometrics 18(12):537–547CrossRefGoogle Scholar
  11. Byrne B and Swanson MS (1998) Expression of Legionella pneumophila virulence traits in response to growth conditions. Infect. Immun. 66(7):3029–3034Google Scholar
  12. Callender R and Deng H (1994) Nonresonance Raman difference spectroscopy: a general probe of protein structure, ligand binding, enzymatic catalysis, and the structures of other biomacromolecules. Annu. Rev. Biophys. Biomol. Struct. 23:215–245CrossRefGoogle Scholar
  13. Callender R, Deng H and Gilmanshin R (1998) Raman difference studies of protein structure and folding, enzymatic catalysis and ligand binding. J. Raman Spectrosc. 29:15–21CrossRefGoogle Scholar
  14. Carey PR (2006) Raman crystallography and other biochemical applications of Raman microscopy. Annu. Rev. Phys. Chem. 57: 527–554CrossRefGoogle Scholar
  15. Cazemier AE, Wagenaars SFM and ter Steeg PF (2001) Effect of sporulation and recovery medium on the heat resistance and amount of injury of spores from spoilage bacilli. J. Appl. Microbiol. 90:761–770CrossRefGoogle Scholar
  16. Chan JW, Esposito AP, Talley CE, Hollars CW, Lane SM and Huser T (2004) Reagentless identification of single bacterial spores in aqueous solution by confocal laser tweezers Raman spectroscopy. Anal. Chem. 76(3):599–603CrossRefGoogle Scholar
  17. Choo-Smith LP, Maquelin K, van Vreeswijk T, Bruining HA, Puppels GJ, Ngo Thi NA, Kirschner C, Naumann D, Ami D, Villa AM, Orsini F, Doglia SM, Lamfarraj H, Sockalingum GD, Manfait M, Allouch P and Endtz HP (2001) Investigating microbial (micro)colony heterogeneity by vibrational spectroscopy. Appl. Environ. Microbiol. 67(4):1461–1469CrossRefGoogle Scholar
  18. Cowart RE, Lashmet J, McIntosh ME and Adams TJ (1990) Adherence of a virulent strain of Listeria monocytogenes to the surface of a hepatocarcinoma cell line via lectin-substrate interaction. Arch. Microbiol. 153(3):282–286CrossRefGoogle Scholar
  19. Czuprynski CJ, Brown JF and Roll JT (1989) Growth at reduced temperatures increases the virulence of Listeria monocytogenes for intravenously but not intragastrically inoculated mice. Microb. Pathog. 7(3):213–23CrossRefGoogle Scholar
  20. De Gussem K, Vandenabeele P, Verbeken A and Moens L (2005) Raman spectroscopic study of Lactarius spores (Russulales, Fungi). Spectrochim. Acta A 61:2896–2908CrossRefGoogle Scholar
  21. Driskell JD, Kwarta KM, Lipert RJ and Porter MD (2005) Low-level detection of viral pathogens by a surface-enhanced Raman scattering based immunoassay. Anal. Chem. 77:6147–6154CrossRefGoogle Scholar
  22. Durst J (1975) The role of temperature factors in the epidemiology of listeriosis. Zentralbl. Bakteriol. [Orig. A] 233(1):72–74Google Scholar
  23. Efrima S, Bronk BV and Czégé J (1999) Surface enhanced Raman spectroscopy of bacteria coated by silver. Proc. SPIE 3602:164–171CrossRefGoogle Scholar
  24. Eichenbaum Z, Green BD and Scott JR (1996) Iron starvation causes release from the group A streptococcus of the ADP-ribosylating protein called plasmin receptor or surface glyceraldehyde-3-phosphate-dehydrogenase. Infect. Immun. 64(6):1956–1960Google Scholar
  25. Escoriza MF, Van Briesen JM, Stewart S, Maier J and Treado PJ (2006) Raman spectroscopy and chemical imaging for quantification of filtered waterborne bacteria. J. Microbiol. Methods 66(1):63–72CrossRefGoogle Scholar
  26. Esposito AP, Talley CE, Huser T, Hollars CW, Schaldach CM and Lane SM (2003) Analysis of single bacterial spores by micro-Raman spectroscopy. Appl. Spectrosc. 57:868–871CrossRefGoogle Scholar
  27. Facinelli B, Giovanetti E, Magi G, Biavasco F and Varaldo PE (1998) Lectin reactivity and virulence among strains of Listeria monocytogenes determined in vitro using the enterocyte-like cell line Caco-2. Microbiol. 144(Pt 1):109–118Google Scholar
  28. Gilot P, Andre P and Content J (1999) Listeria monocytogenes possesses adhesins for fibronectin. Infect. Immun. 67(12):6698–6701Google Scholar
  29. Gilot P, Jossin Y and Content J (2000) Cloning, sequencing and characterisation of a Listeria monocytogenes gene encoding a fibronectin-binding protein. J. Med. Microbiol. 49(10):887–896Google Scholar
  30. Goldfarb WB and Margraf H (1967) Cyanide production by Pseudomonas aeruginosa. Ann. Surg. 165(1):104–110CrossRefGoogle Scholar
  31. González I, López M, Matnez S, Bernardo A and González J (1999) Thermal inactivation of Bacillus cereus spores formed at different temperatures. Int. J. Food Microbiol. 51:81–84CrossRefGoogle Scholar
  32. Goodacre R, Timmins EM, Burton R, Kaderbhai N, Woodward AM, Kell DB and Rooney PJ (1998) Rapid identification of urinary tract infection bacteria using hyperspectral whole-organism fingerprinting and artificial neural networks. Microbiology 144:1157–1170Google Scholar
  33. Gray PC, Shokair I, Rosenthal S, Tisone GC, Wagner JS, Rigdon LD, Siragusa GR and Heinin RJ (1998) Distinguishability of biological material using ultraviolet multi-spectral fluorescence. Appl. Opt. 37:6037–6041CrossRefGoogle Scholar
  34. Grow AE (1999) Raman optrode processes and devices for detection of chemicals and microorganisms. U.S. Patent No. 5,866,430Google Scholar
  35. Grow AE (2001) SBIR Phase I Final Report, Contract No. 50-DKNA-0-90046. U.S. Department of Commerce, NOAAGoogle Scholar
  36. Grow AE (2002) SBIR Phase I Final Report, Grant No. 1R43ES11226-01. NIEHSGoogle Scholar
  37. Grow AE, Wood L, Deal M, Claycomb J, Lee S and Thompson P (2002) SBIR Phase II Final Report, Contract No. NAS5-00222. NASAGoogle Scholar
  38. Grow AE, Wood LL, Claycomb JL and Thompson PA (2003a) New biochip technology for label-free detection of pathogens and their toxins. J. Microbiol. Methods. 53(2):221–233CrossRefGoogle Scholar
  39. Grow AE, Deal MS, Thompson PA and Wood LL (2003b) Evaluation of the Doodlebug: A Biochip for Detecting Waterborne Pathogens. IWA Publishing, LondonGoogle Scholar
  40. Guicheteau JA and Christesen SD (2004) Surface-enhanced Raman immunoassay (SERIA): detection of Bacillus globigii in ground water. Proc. SPIE 5585:113–121CrossRefGoogle Scholar
  41. Guicheteau J and Christesen SD (2007) Principal component analysis of bacteria using surface-enhanced Raman spectroscopy. Proc. SPIE 6218:62180GCrossRefGoogle Scholar
  42. Helgason E, Okstad OA, Caugant DA, Johansen HA, Fouet A, Mock M, Hegna I and Kolsto A-B (2000) Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis–one species on the basis of genetic evidence. Appl. Environ. Microbiol. 66:2627–2630CrossRefGoogle Scholar
  43. Helm D, Labischinski H, Schallehn G and Naumann D (1991) Classification and identification of bacteria by Fourier transform infrared spectroscopy. J. Gen. Microbiol. 137:69–79Google Scholar
  44. Holt C, Hirst D, Sutherland A and MacDonald F (1995) Discrimination of species in the genus Listeria by Fourier transform infrared spectroscopy and canonical variate analysis. Appl. Environ. Microbiol. 61(1):377–378Google Scholar
  45. Hosseini H, Ghaffariyeh A and Nikandish R (2007) Noxious compounds in exhaled air, a potential cause for ocular manifestations of H. pylori gastrointestinal infection. Med. Hypotheses 68(1):91–93CrossRefGoogle Scholar
  46. Hou D, Maheshwari S and Chang H-C (2007) Rapid bio-particle concentration and detection by combining a discharge driven vortex with surface-enhanced Raman scattering. Biomicrofluidics 1:014106–014118CrossRefGoogle Scholar
  47. Huang WE, Griffiths RI, Thompson IP, Bailey MJ and Whiteley AS (2004) Raman microscopic analysis of single microbial cells. Anal. Chem. 76:4452–4458CrossRefGoogle Scholar
  48. Huang YS, Karashima T, Yamamoto M and Hamaguchi HO (2005) Molecular-level investigation of the structure, transformation, and bioactivity of single living fission yeast cells by time- and space-resolved Raman spectroscopy. Biochemistry 44(30):10009–10019CrossRefGoogle Scholar
  49. Huang WE, Bailey MJ, Thompson IP, Whiteley AS and Spiers AJ (2007) Single-cell Raman spectral profiles of Pseudomonas fluorescens SBW25 reflects in vitro and in planta metabolic history. Microbial Ecology 53:414–425CrossRefGoogle Scholar
  50. Hutsebaut D, Maquelin K, De Vos P, Vandenabeele P, Moens L and Puppels GJ (2004) Effect of culture conditions on the achievable taxonomic resolution of Raman spectroscopy disclosed by three Bacillus species. Anal. Chem. 76(21):6274–6281CrossRefGoogle Scholar
  51. Hutsebaut D, Vandroemme J, Heyrman J, Dawyndt P, Vandenabeele P, Moens L and de Vos P (2006) Raman microspectroscopy as an identification tool within the phylogenetically homogeneous “Bacillus subtilis”-group. Syst. Appl. Microbiol. 29(8):650–660CrossRefGoogle Scholar
  52. Ibelings MS, Maquelin K, Endtz HP, Bruining HA and Puppels GJ (2005) Rapid identification of Candida spp. in peritonitis patients by Raman spectroscopy. Clin. Microbiol. Infect. 11(5):353–358CrossRefGoogle Scholar
  53. James BW, Mauchline WS, Fitzgeorge RB, Dennis PJ and Keevil CW (1995) Influence of iron-limited continuous culture on physiology and virulence of Legionella pneumophila. Infect. Immun. 63(11):4224–4230Google Scholar
  54. James BW, Mauchline WS, Dennis PJ and Keevil CW (1997) A study of iron acquisition mechanisms of Legionella pneumophila grown in chemostat culture. Curr. Microbiol. 34(4):238–243CrossRefGoogle Scholar
  55. Jarvis RM and Goodacre R (2004) Discrimination of bacteria using surface-enhanced Raman spectroscopy. Anal. Chem. 76(1):40–47CrossRefGoogle Scholar
  56. Jarvis RM, Brooker A and Goodacre R (2004) Surface-enhanced Raman spectroscopy for bacterial discrimination utilizing a scanning electron microscope with a Raman spectroscopy interface. Anal. Chem. 76(17):5198–5202CrossRefGoogle Scholar
  57. Jarvis RM and Goodacre R (2005) Genetic algorithm optimization for pre-processing and variable selection of spectroscopic data. Bioinformatics 21(7):860–868CrossRefGoogle Scholar
  58. Jarvis RM, Brooker A and Goodacre R (2006) Surface-enhanced Raman scattering for the rapid discrimination of bacteria. Faraday Discus. 132:281–292CrossRefGoogle Scholar
  59. Kapatral V, Olson JW, Pepe JC, Miller VL and Minnich SA (1996) Temperature-dependent regulation of Yersinia enterocolitica Class III flagellar genes. Mol. Microbiol. 19(5):1061–1071CrossRefGoogle Scholar
  60. Kirschner C, Maquelin K, Pina P, Ngo Thi NA, Choo-Smith L-P, Sockalingum GD, Sandt C, Ami D, Orsini F, Doglia SM, Allouch P, Mainfait M, Puppels GJ and Naumann D (2001) Classification and identification of enterococci: a comparative phenotypic, genotypic, and vibrational spectroscopic study. J. Clin. Microbiol. 39(5):1763-1770CrossRefGoogle Scholar
  61. Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR and Feld MS (1997) Single molecule detection using surface-enhanced Raman scattering. Phys. Rev. Lett. 78:1667–1670CrossRefGoogle Scholar
  62. Kneipp K, Kneipp H, Kartha VB, Manoharan R, Deinum G, Itzkan I, Dasari RR and Feld MS (1998a) Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS). Phys. Rev. E 57, Rapid Comm., R6281Google Scholar
  63. Kneipp K, Kneipp H, Manoharan R, Hanlon EB, Itzkan I, Dasari RR and Feld MS (1998b) Extremely large enhancement factors in surface-enhanced Raman scattering for molecules on colloidal gold clusters. Appl. Spectrosc. 52:1493–1497CrossRefGoogle Scholar
  64. Kneipp K, Kneipp H, Itzkan I, Dasari RR and Feld MS (1999) Surface-enhanced non-linear Raman scattering at the single molecule level. Chem. Phys. 247:155–162CrossRefGoogle Scholar
  65. Kozuka S, Yasuda Y and Tochikubo K (1985) Ultrastructural localization of dipicolinic acid in dormant spores of Bacillus subtilis by immunoelectron microscopy with colloidal gold particles. J. Bacteriol. 162(3):1250–1254Google Scholar
  66. Krafft C, Knetschke T, Funk RH and Salzer R (2006) Studies on stress-induced changes at the subcellular level by Raman microspectroscopic mapping. Anal. Chem. 78(13):4424–4429CrossRefGoogle Scholar
  67. Lin FY, Sabri M, Alirezaie J, Li D and Sherman PM (2005) Development of a nanoparticle-labeled microfluidic immunoassay for detection of pathogenic microorganisms. Clin. Diagn. Lab. Immunol. 12(3):418–425CrossRefGoogle Scholar
  68. Litwin CM and Calderwood SB (1994) Analysis of the complexity of gene regulation by fur in Vibrio cholerae. J. Bacteriol. 176(1):240–248Google Scholar
  69. Lynch M, Mosher C, Huff J, Nettikadan S, Johnson J and Henderson E (2004) Functional protein nanoarrays for biomarker profiling. Proteomics 4(6):1695–1702CrossRefGoogle Scholar
  70. Maquelin K, Choo-Smith L-P, van Vreeswijk T, Endtz HP, Smith B, Bennett R, Bruining HA, and Puppels GJ (2000) Raman spectroscopic method for identification of clinically relevant microorganisms growing on solid culture medium. Anal. Chem. 72:12–19CrossRefGoogle Scholar
  71. Maquelin K, Choo-Smith LP, Endtz HP, Bruining HA and Puppels GJ (2002a) Rapid identification of Candida species by confocal Raman microspectroscopy. J. Clin. Microbiol. 40(2):594–600CrossRefGoogle Scholar
  72. Maquelin K, Kirschner C, Choo-Smith LP, van den Braak N, Endtz HP, Naumann D and Puppels GJ (2002b) Identification of medically relevant microorganisms by vibrational spectroscopy. J. Microbiol. Methods 51(3):255–271Google Scholar
  73. Maquelin K, Kirschner C, Choo-Smith LP, Ngo-Thi NA, van Vreeswijk T, Stammler M, Endtz HP, Bruining HA, Naumann D and Puppels GJ (2003) Prospective study of the performance of vibrational spectroscopies for rapid identification of bacterial and fungal pathogens recovered from blood cultures. J. Clin. Microbiol. 41(1):324–329CrossRefGoogle Scholar
  74. Maquelin K, Dijkshoorn L, van der Reijdenm TJ and Puppels GJ (2006) Rapid epidemiological analysis of Acinetobacter strains by Raman spectroscopy. J. Microbiol. Methods 64(1):126–131CrossRefGoogle Scholar
  75. Maresca B (1995) Unraveling the secrets of Histoplasma capsulatum. A model to study morphogenic adaptation during parasite host/host interaction. Verh. K. Acad. Geneeskd. Belg. 57(2):133–156Google Scholar
  76. Marquis RE and Bender GR (1985) Mineralisation and heat resistance of bacterial spores. J. Bacteriol. 161:789–791Google Scholar
  77. Mastronicolis SK, Boura A, Karaliota A, Magiatis P, Arvanitis N, Litos C, Tsakirakis A, Paraskevas P, Moustaka H and Heropoulos G (2006) Effect of cold temperature on the composition of different lipid classes of the foodborne pathogen Listeria monocytogenes: focus on neutral lipids. Food Microbiol. 23(2):184–194CrossRefGoogle Scholar
  78. Mauchline WS, Araujo R, Wait R, Dowsett AB, Dennis PJ and Keevil CW (1992) Physiology and morphology of Legionella pneumophila in continuous culture at low oxygen concentration. J. Gen. Microbiol. 138(Pt 11):2371–2380Google Scholar
  79. Mauchline WS, James BW, Fitzgeorge RB, Dennis PJ and Keevil CW (1994) Growth temperature reversibly modulates the virulence of Legionella pneumophila. Infect. Immun. 62(7):2995–2997Google Scholar
  80. McLauchlin J (1997) The identification of Listeria species. Int. J. Food Microbiol. 38(1):77–81CrossRefGoogle Scholar
  81. Miller VL and Mekalanos JJ (1988) A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J. Bacteriol. 170(6):2575–2583Google Scholar
  82. Mulvaney SP and Keating CD (2000) Raman spectroscopy. Anal. Chem. 72:145R–157RCrossRefGoogle Scholar
  83. Naumann D, Helm D and Labischinski H (1991) Microbiological characterizations by FT-IR spectroscopy. Nature 351:81–82CrossRefGoogle Scholar
  84. Naumann D, Helm D, Labischinski H and Giesbrecht P (1991) The characterization of microorganisms by Fourier-transform infrared spectroscopy (FT-IR). In: Nelsen WH (ed) Modern Techniques for Rapid Microbiological Analysis. VCH, New York, pp 43–96Google Scholar
  85. Naumann D, Keller S, Helm D, Schultz NC and Schrader B (1995) FT-IR spectroscopy and Raman spectroscopy are powerful analytical tools for the non-invasive characterization of intact microbial cells. J. Mol. Struct. 347:399–406CrossRefGoogle Scholar
  86. Ni J, Lipert RJ, Dawson GB and Porter MD (1999) Immunoassay readout method using extrinsic Raman labels adsorbed on immunogold colloids. Anal. Chem. 71(21):4903–4908CrossRefGoogle Scholar
  87. Nie S and Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102CrossRefGoogle Scholar
  88. Notermans S, Dufrenne J, Teunis P and Chackraborty T (1998) Studies on the risk assessment of Listeria monocytogenes. J. Food Prot. 61(2):244–248Google Scholar
  89. Notingher I, Selvakumaran J and Hench LL (2004) New detection system for toxic agents based on continuous spectroscopic monitoring of living cells. Biosens. Bioelectron. 20(4):780–789CrossRefGoogle Scholar
  90. Oliver JD (2005) The viable but nonculturable state in bacteria. J. Microbiol. 43(5):93–100Google Scholar
  91. Oust A, Moretro T, Naterstad K, Sockalingum GD, Adt I, Manfait M and Kohler A (2006) Fourier transform infrared and Raman spectroscopy for characterization of Listeria monocytogenes strains. Appl. Environ. Microbiol. 72(1):228–232CrossRefGoogle Scholar
  92. Palop A, Mañas P and Condón S (1999) Sporulation temperature and heat resistance of Bacillus spores: a review. J. Food Safety 19:57–72CrossRefGoogle Scholar
  93. Palop A, Sala FJ and Condón S (1999) Heat resistance of native and demineralised spores of Bacillus subtilis sporulated at different temperatures. Appl. Environ. Microbiol. 65:1316–1319Google Scholar
  94. Peel M, Donachie W and Shaw A (1988) Temperature-dependent expression of flagella of Listeria monocytogenes studied by electron microscopy, SDS-PAGE and western blotting. J. Gen. Microbiol. 134(Pt 8):2171–2178Google Scholar
  95. Perney NMB, Baumberg JJ, Zoorob ME, Charlton MDB, Mahnkopf S and Netti CM (2006) Tuning localized plasmons in nanostructured substrates for surface-enhanced Raman scattering. Opt. Express 14(2):847–857CrossRefGoogle Scholar
  96. Pettersson,A, Poolman JT, van der Ley P and Tommassen J (1997) Response of Neisseria meningitidis to iron limitation. Antonie Van Leeuwenhoek 71(1–2):129–136CrossRefGoogle Scholar
  97. Picard-Bonnaud F, Cottin J and Carbonnelle B (1989) Preservation of the virulence of Listeria monocytogenes in different sorts of soil. Acta Microbiol. Hung. 36(2–3):269–272Google Scholar
  98. Preisner O, Lopes JA, Guiomar R, Machado J and Menezes JC (2007) Fourier transform infrared (FT-IR) spectroscopy in bacteriology: towards a reference method for bacteria discrimination. Anal. Bioanal. Chem. 387:1733–1748CrossRefGoogle Scholar
  99. Premasiri WR, Moir DT and Ziegler LD (2005) Vibrational fingerprinting of bacterial pathogens by surface enhanced Raman scattering (SERS). Proc. SPIE 5795:19–29CrossRefGoogle Scholar
  100. Premasiri WR, Moir DT, Klempner MS, Krieger N, Jones G 2nd and Ziegler LD (2005) Characterization of the surface enhanced Raman scattering (SERS) of bacteria. J. Phys. Chem. B 109(1):312–320CrossRefGoogle Scholar
  101. Raso J, Barbosa-Cánovas G and Swanson BG (1998) Sporulation temperature affects initiation of germination and inactivation by high hydrostatic pressure of Bacillus cereus. J. Appl. Microbiol. 85:17–24CrossRefGoogle Scholar
  102. Rösch P, Harz M, Schmitt M, Peschke KD, Ronneberger O, Burkhardt H, Motzkus HW, Lankers M, Hofer S, Thiele H and Popp J (2005) Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: application to clean-room-relevant biological contaminations. Appl. Environ. Microbiol. 71(3):1626–1637CrossRefGoogle Scholar
  103. Rösch P, Harz M, Peschke KD, Ronneberger O, Burkhardt H and Popp J (2006) Identification of single eukaryotic cells with micro-Raman spectroscopy. Biopolymers 82(4):312–316CrossRefGoogle Scholar
  104. Samoilova SV, Samoilova LV, Yezhov IN, Drozdov IG and Anisimov AP (1996) Virulence of pPst+ and pPst- strains of Yersinia pestis for guinea-pigs. J. Med. Microbiol. 45(6):440–444CrossRefGoogle Scholar
  105. Schuster KC, Urlaub E and Gapes JR (2000) Single-cell analysis of bacteria by Raman microscopy: spectral information on the chemical composition of cells and on the heterogeneity in a culture. J. Microbiol. Methods 42:29–38CrossRefGoogle Scholar
  106. Scott IR and Ellar DJ (1978) Study of calcium dipicolinate release during bacterial spore germination by using a new, sensitive assay for dipicolinate. J. Bacteriol. 135(1):133–137Google Scholar
  107. Seltmann G, Voigt W and Beer W (1994) Application of physico-chemical typing methods for the epidemiological analysis of Salmonella enteritidis strains of phage type 25/17. Epidemiol. Infect. 113(3):411–424CrossRefGoogle Scholar
  108. Sengupta A, Laucks ML and Davis EJ (2005) Surface-enhanced Raman spectroscopy of bacteria and pollen. Appl. Spectrosc. 59(8):1016–1023CrossRefGoogle Scholar
  109. Shibata H, Yamashita S, Ohe M and Tani I (1986) Laser Raman spectroscopy of lyophilized bacterial spores. Microbiol. Immunol. 30(4):307–313Google Scholar
  110. Singh GP, Creely CM, Volpe G, Grötsch H and Petrov D (2005) Real-time detection of hyperosmotic stress resonse in optically trapped single yeast cells using Raman microspectroscopy. Anal. Chem. 77:2564–2568CrossRefGoogle Scholar
  111. Singh GP, Volpe G, Creely CM, Grötsch H, Geli IM and Petrov D (2006) The lag phase and G1 phase of a single yeast cell monitored by Raman microspectroscopy. J. Raman Spectrosc. 37:858–864CrossRefGoogle Scholar
  112. Sockalingum GD, Lamfarraj H, Beljebbar A, Pina P, Delavenne D, Witthuhn F, Allouch P and Manfait M (1999) Vibrational spectroscopy as a probe to rapidly detect, identify, and characterize micro-organisms. Proc. SPIE 3608:185–194CrossRefGoogle Scholar
  113. Spencer KM, Sylvia JM, Clauson SL and Janni JA (2002) Surface-enhanced Raman as a water monitor for warfare agents. Proc. SPIE 4577:158–165CrossRefGoogle Scholar
  114. Stephens JC, Roberts IS, Jones D and Andrew PW (1991) Effect of growth temperature on virulence of strains of Listeria monocytogenes in the mouse: evidence for a dose dependence. J. Appl. Bacteriol. 70(3):239–244Google Scholar
  115. Stevenson HJR and Bolduan OE (1952) Infrared spectrophotometry as a means for identification of bacteria. Science 116:111–113CrossRefGoogle Scholar
  116. Thomas LC and Greenstreet JES (1954) The identification of micro-organisms by infrared spectrophotometry. Spectrochim. Acta 6:302–319CrossRefGoogle Scholar
  117. Thompson PA, Guan Y, Wood LL and Grow AE (2000a) SBIR Phase I Final Report, Contract DAAD16-00-C-9217. U.S. Army Soldier & Biological Chemical CommandGoogle Scholar
  118. Thompson PA, Guan Y, Wood LL and Grow AE (2000b) STTR Phase II Final Report, Contract No. DAAG55-98-C-0004. U.S. Army Research OfficeGoogle Scholar
  119. Thuan BP, Calderon de la Barca AM, Buck G, Galsworthy SB and Doyle RJ (2000) Interactions between listeriae and lectins. Roum. Arch. Microbiol. Immunol. 59(1–2):55–61Google Scholar
  120. Wagner JS, Trahan MW, Nelson WE, Tisone GC and Prepernau BL (1996) How intelligent chemical recognition benefits from multivariate analysis and genetic optimization. Computers in Physics 10(2):113–118Google Scholar
  121. Williams OB and Robertson WJ (1954) Studies on heat resistance. VI. Effect of temperature of incubation at which formed on heat resistance of aerobic thermophilic spores. J. Bacteriol. 67:377–378Google Scholar
  122. Xie C, Chen D and Li YQ (2005) Raman sorting and identification of single living micro-organisms with optical tweezers. Opt. Lett. 30(14):1800–1802CrossRefGoogle Scholar
  123. Xie C, Mace J, Dinno MA, Li YQ, Tang W, Newton RJ and Gemperline PJ (2005) Identification of single bacterial cells in aqueous solution using confocal laser tweezers Raman spectroscopy. Anal. Chem. 77(14):4390–4397CrossRefGoogle Scholar
  124. Xu H, Bjerneld EJ, Kall M and Borjesson L (1999) Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys. Rev. Lett. 83(21):4357–4360CrossRefGoogle Scholar
  125. Xu S, Ji X, Xu W, Li X, Wang L, Bai Y, Zhao B and Ozaki Y (2004) Immunoassay using probe-labelling immunogold nanoparticles with silver staining enhancement via surface-enhanced Raman scattering. Analyst 129(1):63–68CrossRefGoogle Scholar
  126. Xu S, Ji X, Xu X, Zhao B, Dou X, Bai Y and Osaki Y (2005) Surface-enhanced Raman scattering studies on immunoassay. J. Biomed. Opt. 10(3):031112-1- 031112-12CrossRefGoogle Scholar
  127. Zeiri L, Bronk BV, Shabtai Y, Eichler J and Efrima S (2004) Surface-enhanced Raman spectroscopy as a tool for probing specific biochemical components in bacteria. Appl. Spectrosc. 58(1):33–40CrossRefGoogle Scholar
  128. Zeiri L and Efrima S (2005) Surface-enhanced Raman spectroscopy of bacteria: the effect of excitation wavelength and chemical modification of the colloidal milieu. J. Raman Spectrosc. 36(6–7):667–675CrossRefGoogle Scholar
  129. Zhu Q, Quivey RG and Berger AJ (2004) Measurement of bacterial concentration fractions in polymicrobial mixtures by Raman microspectroscopy. J. Biomed. Opt. 9(6):1182–1186CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Ann E. Grow
    • 1
  1. 1.Biopraxis Inc.San Diego

Personalised recommendations