Detection and Viability Assessment of Endospore-Forming Pathogens

  • Adrian Ponce
  • Stephanie A. Connon
  • Pun To Yung


In this chapter, we explore technology developments for the rapid detection, identification, and viability assessment of endospore-forming pathogens with a focus on Bacillus anthracis. First, we introduce various toxin-producing species and their role as bioinsecticides, probiotics, and bioweapons. We also review the role of endospores as biological indicators (i.e., dosimeters) for evaluating sterilization regimens, such as autoclaving and wastewater remediation. Monitoring the effectiveness of cleaning and sterilization regimens to maintain good hygiene is required in several major industries, including health care, food, and pharmaceutical industries. In the next section, we review recent developments in DNA-, immuno-, and dipicolinic acid assays, and their applications for detection and monitoring of Bacillus anthracis and other endospore-forming pathogens. Finally, we review viability assays capable of rapid validation of endospore inactivation after sterilization, including assays based on ATP synthesis during stage II germination, and DPA release during stage I germination.


Bacillus Cereus Multiplex Polymerase Chain Reaction Clinical Microbiology Environmental Microbiology Bacillus Anthracis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ajithkumar B, Ajithkumar VP, Iriye, et al. (2003) Spore-forming Serratia marcescens subsp sakuensis subsp nov., isolated from a domestic wastewater treatment tank. International Journal of Systematic and Evolutionary Microbiology 53:253–258Google Scholar
  2. Allen SD, Emery CL and Lyerly DM (2003) Clostridium. In Murray P, Baron E, Pfaller M, Jorgensen J, and Yolken R (eds) Manual of Clinical Microbiology. ASM Press: Washington D.C., pp 835–856Google Scholar
  3. Andersen GL,Simchock JM and Wilson KH (1996) Identification of a region of genetic variability among Bacillus anthracis strains and related species. Journal of Bacteriology 178(2):377–384Google Scholar
  4. Azizbekyan RR (2004) The fungicidal activity of spore-forming bacteria. In Ricca E, Henriques AO, and Cutting SM (eds) Bacterial Spore Formers - Probiotics and Emerging Applications. Horizon Bioscience: Norfolk, pp 229–236Google Scholar
  5. Baeumner AJ, Leonard B, McElwee J et al. (2004) A rapid biosensor for viable B. anthracis spores. Analytical and Bioanalytical Chemistry 380(1):15–23CrossRefGoogle Scholar
  6. Baez LA, Juneja VK, Thayer DW et al. (1997) Evaluation of PCR and DNA hybridization protocols for detection of viable enterotoxigenic Clostridium perfringens in irradiated beef. Journal of Food Safety 17(4):229–238CrossRefGoogle Scholar
  7. Balassa G, Milhaud P, Raulet E, Silva MT, Sousa JC (1979) A Bacillus subtilis mutant requiring dipicolinic acid for the development of heat-resistant spores. Journal of General Microbiology 110(2):365–379Google Scholar
  8. Balzani V (1990) Supramolecular photochemistry. Pure and Applied Chemistry 62(6):1099–1102CrossRefGoogle Scholar
  9. Balzani V, Decola L, Prodi L et al. (1990) Photochemistry of supramolecular species. Pure and Applied Chemistry 62(8):1457–1466CrossRefGoogle Scholar
  10. Barany F (1991) The ligase chain reaction in a PCR world. PCR Methods and Applications 1(1):5–16Google Scholar
  11. Baron PA and Willeke K (2001) Aerosol Measurement: Principles, Techniques, and Applications. Wiley, John & Sons, Inc.: New YorkGoogle Scholar
  12. Basol MS and Gogus U (1996) Methods of antibiotic applications related to microbiological quality of lamb by PCA and bioluminescence. Journal of Food Science 61:348–349CrossRefGoogle Scholar
  13. Beeby A, Botchway SW, Clarkson IM, Faulkner S, Parker AW, Parker D, Williams JA (2000) Luminescence imaging microscopy and lifetime mapping using kinetically stable lanthanide (III) complexes. Journal of Photochemistry and Photobiology B 57(2-3):83–89CrossRefGoogle Scholar
  14. Belgrader P, Benett W, Hadley D et al. (1998a) Rapid pathogen detection using a microchip PCR array instrument. Clinical Chemistry 44(10):2191–2194Google Scholar
  15. Belgrader P, Smith JK, Weedn VW et al. (1998b) Rapid PCR for identity testing using a battery-powered miniature thermal cycler. Journal of Forensic Sciences 43(2):315–319Google Scholar
  16. Belgrader P, Benett W, Hadley D et al. (1999a) Infectious disease - PCR detection of bacteria in seven minutes. Science 284(5413):449–450CrossRefGoogle Scholar
  17. Belgrader P, Hansford D, Kovacs GTA et al. (1999b) A minisonicator to rapidly disrupt bacterial spores for DNA analysis. Analytical Chemistry 71(19):4232–4236CrossRefGoogle Scholar
  18. Belgrader P, Okuzumi M, Pourahmadi F et al. (2000) A microfluidic cartridge to prepare spores for PCR analysis. Biosensors & Bioelectronics 14(10-11):849–852CrossRefGoogle Scholar
  19. Belgrader P, Young S, Yuan B et al. (2001) A battery-powered notebook thermal cycler for rapid multiplex real time PCR analysis. Analytical Chemistry 73(2):286–289CrossRefGoogle Scholar
  20. Bell CA, Uhl JR, Hadfield TL et al. (2002) Detection of Bacillus anthracis DNA by LightCycler PCR. Journal of Clinical Microbiology 40(8):2897–2902CrossRefGoogle Scholar
  21. Birmingham JG (2006) Plasma lysis for identification of bacterial spores using ambient-pressure nonthermal discharges. IEEE Transactions on Plasma Science 34(4):1270–1274CrossRefGoogle Scholar
  22. Blumenthal T (1979) Qbeta RNA replicase and protein synthesis elongation factors EF-Tu and EF-Ts. Methods in Enzymology 60:628–638CrossRefGoogle Scholar
  23. Board SS and Council NR (2000) Preventing the Forward Contamination of Europa. National Academy Press: Washington, D.C.Google Scholar
  24. Bode E, Hurtle W and Norwood D (2004) Real-time PCR assay for a unique chromosomal sequence of Bacillus anthracis. Journal of Clinical Microbiology 42(12):5825–5831CrossRefGoogle Scholar
  25. Borthwick KAJ, Love TE, McDonnell MB et al. (2005) Improvement of immunodetection of bacterial spore antigen by ultrasonic cavitation. Analytical Chemistry 77(22):7242–7245CrossRefGoogle Scholar
  26. Bruno JG and Yu H (1996) Immunomagnetic-electrochemiluminescent detection of Bacillus anthracis spores in soil matrices. Applied and Environmental Microbiology 62(9):3474–3476Google Scholar
  27. Cable ML, Kirby JP, Sorasaenee K et al. (2007) Bacterial spore detection by [Tb3+(macrocycle)(dipicolinate)] luminescence. Journal of the American Chemical Society 129:1474–1475CrossRefGoogle Scholar
  28. Caipo M, Duffy S, Zhao L et al. (2002) Bacillus megaterium spore germination is influenced by inoculum size. Journal of Applied Microbiology 92:879–884CrossRefGoogle Scholar
  29. Cano RJ and Borucki MK (1995) Revival and identification of bacterial spores in 25-million-year-old to 40-million-year-old Dominican amber. Science 268(5213):1060–1064CrossRefGoogle Scholar
  30. Chappelle EW and Levin GV (1968) Use of the firefly bioluminescence reaction for rapid detection and counting of bacteria. Biochemical Medicine 2:41–52CrossRefGoogle Scholar
  31. Chattopadhyay A, Bhatnagar NB and Bhatnagar R (2004) Bacterial insecticidal toxins. Critical Reviews in Microbiology 30(1):33–54CrossRefGoogle Scholar
  32. Chen S (2007) One hour molecular diagnostics at the bedside. Next Generation Pharmaceutical issue 7, http://www.ngpharma.comGoogle Scholar
  33. Cherif A, Borin S, Rizzi A et al. (2003a) Bacillus anthracis diverges from related clades of the Bacillus cereus group in 16S-23S ribosomal DNA intergenic transcribed spacers containing tRNA genes. Applied and Environmental Microbiology 69(1):33–40Google Scholar
  34. Cherif A, Brusetti L, Borin S et al. (2003b) Genetic relationship in the ’Bacillus cereus group’ by rep-PCR fingerprinting and sequencing of a Bacillus anthracis-specific rep-PCR fragment. Journal of Applied Microbiology 94(6):1108–1119CrossRefGoogle Scholar
  35. Cohn F (1876) Untersuchungen uber Bacterien. IV. Beitrage zur Biologie der Bacillen. Beitr. Biol. Pflanz. 2:249–276Google Scholar
  36. Colwell R and Grimes D (2000) Non-Culturable Microorganisms in the Environment. ASM Press: Washington, D.C.Google Scholar
  37. Compton J (1991) Nucleic-acid sequence-based amplification. Nature 350(6313): 91–92CrossRefGoogle Scholar
  38. Connally R, Veal D and Piper J (2002) High resolution detection of fluorescently labeled microorganisms in environmental samples using time-resolved fluorescence microscopy. FEMS Microbiology Ecology 41( 3): 239–245CrossRefGoogle Scholar
  39. Connon SA and Giovannoni SJ (2002) High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Applied and Environmental Microbiology 68(8):3878–3885CrossRefGoogle Scholar
  40. Cox CS and Wathes CM (eds) (1995) Bioaerosols Handbook: Handbook of Samplers and Sampling. CRC Press: Boca Raton, FLGoogle Scholar
  41. Cross J (1992) Harnessing the firefly. Food Manufacture 67:25Google Scholar
  42. Cutting SM (2004) Spores as oral vaccines. In Ricca E, Henriques AO, Cutting SM (eds) Bacterial Spore Formers - Probiotics and Emerging Applications. Horizon Bioscience: Norfolk, pp 201–206Google Scholar
  43. Daffonchio D, Borin S, Frova G et al. (1999) A randomly amplified polymorphic DNA marker specific for the Bacillus cereus group is diagnostic for Bacillus anthracis. Applied and Environmental Microbiology 65(3):1298–1303Google Scholar
  44. Dart RK (1996) Microbiology for the Analytical Chemist. The Royal Society of Chemistry: Cambridge, UKGoogle Scholar
  45. De BK, Bragg SL, Sanden GN et al. (2002) Two-component direct fluorescent-antibody assay for rapid identification Bacillus anthracis. Emerging Infectious Diseases 8(10):1060–1065Google Scholar
  46. Deere D, Porter J, Pickup R et al. (1996) Direct analysis of starved Aeromonas salmonicida. Journal of Fish Diseases 19(6):459–467CrossRefGoogle Scholar
  47. Desser H and Broda E (1965) Radiochemical determination of the endogenous and exogenous respiration of bacterial spores. Nature 206(4990):1270–1271CrossRefGoogle Scholar
  48. Dierick K (2005) Fatal family outbreak of Bacillus cereus-associated food poisoning. Journal of Clinical Microbiology 43(8):4277CrossRefGoogle Scholar
  49. Dirckx JH (1981) Virgil on anthrax. American Journal of Dermatopathology 3(2):191–195Google Scholar
  50. Dixon TC, Meselson M, Guillemin J et al. (1999) Anthrax. New England Journal of Medicine 341(11):815–826CrossRefGoogle Scholar
  51. Dobkin C, Mills DR, Kramer FR et al. (1979) RNA replication: required intermediates and the dissociation of template, product, and Q beta replicase. Biochemistry 18(10):2038–2044CrossRefGoogle Scholar
  52. Dombrowski H (1963) Bacteria from paleozoic salt deposits. Annals of the New York Academy of Sciences 108(2):453–460CrossRefGoogle Scholar
  53. Drago L, Lombardi A, De Veechi E et al. (2002) Real-time PCR assay for rapid detection of Bacillus anthracis spores in clinical samples. Journal of Clinical Microbiology 40(11):4399–4399CrossRefGoogle Scholar
  54. Drews G (2000) The roots of microbiology and the influence of Ferdinand Cohn on microbiology of the 19th century. FEMS Microbiology Reviews 24(3):225–249CrossRefGoogle Scholar
  55. Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E, eds (2006) The Prokaryotes, A Handbook on the Biology of Bacteria, Vol. 4. Springer.Google Scholar
  56. Edwards KA, Harriet AC and Antje JB (2006) Bacillus anthracis: toxicology, epidemiology and current rapid-detection methods. Analytical and Bioanalytical Chemistry 384(1):73–84CrossRefGoogle Scholar
  57. Ellerbrok H, Nattermann H, Ozel M et al. (2002) Rapid and sensitive identification of pathogenic and apathogenic Bacillus anthracis by real-time PCR. FEMS Microbiology Letters 214(1):51–59CrossRefGoogle Scholar
  58. Elzi MV, Mallard K, Droz S et al. (2005) Polyphasic approach for identifying Bacillus spp. Journal of Clinical Microbiology 43(2):1010–1010CrossRefGoogle Scholar
  59. Espy MJ, Uhl JR, Sloan LM et al. (2006) Real-time PCR in clinical microbiology: Applications for a routine laboratory testing. Clinical Microbiology Reviews 19(1):165–256CrossRefGoogle Scholar
  60. Ezzell JW, Abshire TG, Little SF et al. (1990) Identification of Bacillus-anthracis by using monoclonal-antibody to cell-wall galactose-N-acetylglucosamine polysaccharide. Journal of Clinical Microbiology 28(2):223–231Google Scholar
  61. Farrell S, Halsall HB and Heineman WR (2005) Immunoassay for B-globigii spores as a model for detecting B-anthracis spores in finished water. Analyst 130(4):489–497CrossRefGoogle Scholar
  62. Fasanella A, Losito S, Adone R et al. (2003) PCR assay to detect Bacillus anthracis spores in heat-treated specimens. Journal of Clinical Microbiology 41(2):896–899CrossRefGoogle Scholar
  63. Felske ADM (2004) Ecology of Bacillus species in soil. In Ricca E, Henriques AO, Cutting SM (eds) Bacterial Spore Formers - Probiotics and Emerging Applications. Horizon Bioscience: Norfolk, pp 35–44Google Scholar
  64. Finlay WJJ (2000) Bacillus cereus produces most emetic toxin at lower temperatures. Letters in Applied Microbiology 31(5):385CrossRefGoogle Scholar
  65. Floriano PN, Christodoulides N, Romanovicz D et al. (2005) Membrane-based on-line optical analysis system for rapid detection of bacteria and spores. Biosensors & Bioelectronics 20(10):2079–2088CrossRefGoogle Scholar
  66. Foster SJ and Johnstone K (1990) Pulling the trigger: the mechanism of bacterial spore germination. Molecular Microbiology 4(1):137–141CrossRefGoogle Scholar
  67. Fritze D (2004a) Taxonomy and systematics of the aerobic endospore forming bacteria: Bacillus and related genera. In Ricca E, Henriques AO, Cutting SM (eds) Bacterial Spore Formers - Probiotics and Emerging Applications. Horizon Bioscience: Norfolk, pp 17–34Google Scholar
  68. Fritze D (2004b) Taxonomy of the genus Bacillus and related genera: The aerobic endospore-forming bacteria. Phytopathology 94(11):1245–1248CrossRefGoogle Scholar
  69. Fujinami Y, Kataoka M, Matsushita K et al. (2004) Sensitive detection of bacteria and spores using a portable bioluminescence ATP measurement assay system distinguishing from white powder materials. Journal of Health Science 50(2):126–132CrossRefGoogle Scholar
  70. Gattomenking DL, Yu H, Bruno JG et al. (1995) Sensitive detection of biotoxoids and bacterial-spores using an immunomagnetic electrochemiluminescence sensor. Biosensors & Bioelectronics 10(6-7):501–507CrossRefGoogle Scholar
  71. Gest H, Mandelstam J (1987) Longevity of microorganisms in natural environments. Microbiological Science 4(3):69–71Google Scholar
  72. Gohar M, Gilois N, Graveline R et al. (2005) A comparative study of Bacillus cereus, Bacillus thuringiensis and Bacillus anthracis extracellular proteomes. Proteomics 5(14):3696–3711CrossRefGoogle Scholar
  73. Gould GW and Hurst A (1969) The Bacterial Spore. Academic Press, New YorkGoogle Scholar
  74. Gould GW (2005) History of science - spores: Lewis B Perry memorial lecture 2005. Journal of Applied Microbiology 101(3):507–513CrossRefGoogle Scholar
  75. Grenthe I (1961) Stability relationships among the rare earth dipicolinates. Journal of the American Chemical Society 83:360–364CrossRefGoogle Scholar
  76. Griffiths MW (1993) Applications of bioluminescence in the dairy industry. Journal of Dairy Science 76(10):3118–3125CrossRefGoogle Scholar
  77. Griffiths MW (1996) The role of ATP bioluminescence in the food industry: New light on old problems. Food Technology 50(6):64–66Google Scholar
  78. Griffiths WD and Decosemo GAL (1994) The assessment of bioaerosols - a critical-review. Journal of Aerosol Science 25(8):1425–1458CrossRefGoogle Scholar
  79. Griffiths WD, Stewart IW, Futter SJ et al. (1997) The development of sampling methods for the assessment of indoor bioaerosols. Journal of Aerosol Science 28(3):437–457CrossRefGoogle Scholar
  80. Han CS, Xie G, Challacombe JF et al. (2006) Pathogenomic sequence analysis of Bacillus cereus and Bacillus thuringiensis isolates closely related to Bacillus anthracis. Journal of Bacteriology 188(9):3382–3390CrossRefGoogle Scholar
  81. Hansen BM, Leser TD and Hendriksen NB (2001) Polymerase chain reaction assay for the detection of Bacillus cereus group cells. FEMS Microbiology Letters 202(2):209–213CrossRefGoogle Scholar
  82. Hanson RS, Halvorson HO, Curry MV et al. (1972) Mutants of Bacillus-cereus strain T that produce thermoresistant spores lacking dipicolinate and have low levels of calcium. Canadian Journal of Microbiology 18(7):1139–43CrossRefGoogle Scholar
  83. Hartley HA and Baeumner AJ (2003) Biosensor for the specific detection of a single viable B-anthracis spore. Analytical and Bioanalytical Chemistry 376(3):319–327Google Scholar
  84. Hashimoto T, Frieben WR and Conti SF (1969a) Germination of single bacterial spores. Journal of Bacteriology 98:1011–1020Google Scholar
  85. Hashimoto T, Frieben WR and Conti SF (1969b) Microgermination of Bacillus cereus spores. Journal of Bacteriology 100(3):1385–1392Google Scholar
  86. Hattori NN, Sakakibara TT, Kajiyama NN et al. (2003) Enhanced microbial biomass assay using mutant luciferase resistant to benzalkonium chloride. Analytical Biochemistry 319(2):287–95CrossRefGoogle Scholar
  87. Hausenbauer JM, Waites WM and Setlow P (1977) Biochemical properties of Clostridium bifermentans spores. Journal of Bacteriology. 129(2):1148–1150Google Scholar
  88. Helgason E, Okstad OA, Caugant DA et al. (2000) Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis - One species on the basis of genetic evidence. Applied and Environmental Microbiology 66(6):2627–2630CrossRefGoogle Scholar
  89. Hellyer TJ, DesJardin LE, Hehman GL et al. (1999a) Quantitative analysis of mRNA as a marker for viability of Mycobacterium tuberculosis. Journal of Clinical Microbiology 37(2):290–295Google Scholar
  90. Hellyer TJ, DesJardin LE, Teixeira L et al. (1999b) Detection of viable Mycobacterium tuberculosis by reverse transcriptase-strand displacement amplification of mRNA. Journal of Clinical Microbiology 37(3):518–523Google Scholar
  91. Henriques AO and Moran CP (2000) Structure and assembly of the bacterial endospore coat. Methods 20:95–110CrossRefGoogle Scholar
  92. Henriques AO, Costa TV, Martins LO et al. (2004) The functional architecture and assembly of the spore coat. In Ricca E, Henriques AO, Cutting SM (eds) Bacterial Spore Formers - Probiotics and Emerging Applications. Horizon Bioscience: Norfolk, pp 65–86Google Scholar
  93. Herman L (1997) Detection of viable and dead Listeria monocytogenes by PCR. Food Microbiology 14:103–110CrossRefGoogle Scholar
  94. Higgins JA, Ibrahim MS, Knauert FK et al. (1999) Sensitive and rapid identification of biological threat agents. Food and Agricultural Security 894:130–148Google Scholar
  95. Higgins JA, Cooper M, Schroeder-Tucker L et al. (2003a) A field investigation of Bacillus anthracis contamination of U.S. Department of Agriculture and other Washington, D.C., buildings during the anthrax attack of October 2001. Applied and Environmental Microbiology 69(1):593–599CrossRefGoogle Scholar
  96. Higgins JA, Nasarabadi S, Karns JS et al. (2003b) A handheld real time thermal cycler for bacterial pathogen detection. Biosensors & Bioelectronics 18(9):1115–1123CrossRefGoogle Scholar
  97. Hills GM (1949a) Chemical factors in the germination of spore-bearing aerobes - the effect of yeast extract on the germination of Bacillus anthracis and its replacement by adenosine. Biochemical Journal 45(3):353–362Google Scholar
  98. Hills GM (1949b) Chemical factors in the germination of spore-bearing aerobes - the effects of amino-acids on the germination of Bacillus anthracis, with some observations on the relation of optical form to biological activity. Biochemical Journal 45(3):363–370Google Scholar
  99. Hills GM (1950) Chemical factors in the germination of spore-bearing aerobes - observations on the influence of species, strain and conditions of growth. Journal of General Microbiology 4(1):38–47Google Scholar
  100. Hindle AA, Hall EAH (1999) Dipicolinic acid (DPA) assay revisited and appraised for spore detection. Analyst 124(11):1599–1604CrossRefGoogle Scholar
  101. Hindson BJ, Brown SB, Marshall GD et al. (2004) Development of an automated sample preparation module for environmental monitoring of biowarfare agents. Analytical Chemistry 76(13):3492–3497CrossRefGoogle Scholar
  102. Hindson BJ, Makarewicz AJ, Setlur US et al. (2005a). APDS: the autonomous pathogen detection system. Biosensors & Bioelectronics 20(10):1925–1931CrossRefGoogle Scholar
  103. Hindson BJ, McBride MT, Makarewicz AJ et al. (2005b) Autonomous detection of aerosolized biological agents by multiplexed immunoassay with polymerase chain reaction confirmation. Analytical Chemistry 77(1):284–289CrossRefGoogle Scholar
  104. Hitchins AD, Kahn AJ and Slepecky RA (1968) Interference contrast and phase contrast microscopy of sporulation and germination of Bacillus megaterium. Journal of Bacteriology 96(5):1811–1817Google Scholar
  105. Hoch JA and Losick R (1997) Genome sequencing - Panspermia, spores and the Bacillus subtilis genome. Nature 390(6657):237–238CrossRefGoogle Scholar
  106. Hoffmaster AR, Fitzgerald CC, Ribot E et al. (2002a) Molecular subtyping of Bacillus anthracis and the 2001 bioterrorism-associated anthrax outbreak, United States. Emerging Infectious Diseases 8(10):1111–1116Google Scholar
  107. Hoffmaster AR, Meyer RF, Bowen MP et al. (2002b) Evaluation and validation of a real time polymerase chain reaction assay for rapid identification of Bacillus anthracis. Emerging Infectious Diseases 8(10):1178–1182Google Scholar
  108. Hoffmaster AR, Ravel J, Rasko DA et al. (2004) Identification of anthrax toxin genes in a Bacillus cereus associated with an illness resembling inhalation anthrax. Proceedings of the National Academy of Sciences 101(22):8449–8454CrossRefGoogle Scholar
  109. Holland PM, Abramson RD, Watson R et al. (1991) Detection of specific polymerase chain-reaction product by utilizing the 5’- 3’ exonuclease activity of Thermus-aquaticus DNA-polymerase. Proceedings of the National Academy of Sciences 88(16):7276–7280CrossRefGoogle Scholar
  110. Holt JG and Bergey DH (1994) Bergey’s Manual of Determinative Bacteriology. Lippincott Williams & Wilkins: BaltimoreGoogle Scholar
  111. Horneck G, Bucker H and Reitz G (1994) Long-term survival of bacterial spores in space. Advances in Space Research: The Official Journal of the Committee on Space Research (COSPAR) 14(10):41–45Google Scholar
  112. Horrocks Jr. WD and Sudnick D (1981) Lanthanide ion luminescence probes of the structure of biological macromolecules. Accounts of Chemical Research 14:384–392CrossRefGoogle Scholar
  113. Horrocks Jr. WD (1984) Lanthanide ion luminescence in coordination chemistry and biochemistry. In Lippard SJ (ed) Progress in Inorganic Chemistry. John Wiley & Sons, Inc.: New York, pp 1–104CrossRefGoogle Scholar
  114. Hurst A and Gould GW (eds) (1983) The Bacterial Spore - Volume 2. Academic Press, Inc.: New YorkGoogle Scholar
  115. Ibrahim MS, Lofts RS, Jahrling PB et al. (1998) Real-time microchip PCR for detecting single-base differences in viral and human DNA. Analytical Chemistry 70(9):2013–2017CrossRefGoogle Scholar
  116. Ivanova N, Sorokin A, Anderson I et al. (2003) Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis. Nature 423(6935):87–91CrossRefGoogle Scholar
  117. Ivanovics G and Foldes J (1958) An immunospecific substance of Bacillus-cereus similar to polysaccharide obtained from Bacillus-anthracis. Naturwissenschaften 45(1):15–15CrossRefGoogle Scholar
  118. Jackson PJ, Walthers EA, Kalif AS et al. (1997) Characterization of the variable-number tandem repeats in vrrA from different Bacillus anthracis isolates. Applied and Environmental Microbiology 63(4):1400–1405Google Scholar
  119. Jackson PJ, Hugh-Jones ME, Adair DM et al. (1998) PCR analysis of tissue samples from the 1979 Sverdlovsk anthrax victims: The presence of multipleBacillus anthracis strains in different victims. Proceedings of the National Academy of Sciences 95(3):1224–1229CrossRefGoogle Scholar
  120. Jain R, Rivera MC, Moore JE et al. (2003) Non-clonal evolution of microbes. Biological Journal of the Linnean Society 79(1):27–32CrossRefGoogle Scholar
  121. Janssen FW, Lund AJ and Anderson LE (1958) Colorimetric assay for dipicolinic acid in bacterial spores. Science 127(3288):26–27CrossRefGoogle Scholar
  122. Janssen PH, Yates PS, Grinton BE et al. (2002) Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Applied and Environmental Microbiology 68(5):2391–2396CrossRefGoogle Scholar
  123. Jenkinson HF, Kay D and Mandelstam J (1980) Temporal dissociation of late events in Bacillus subtilis sporulation from expression of genes that determine them. Journal of Bacteriology 141(2):793–805Google Scholar
  124. Jernigan DB, Raghunathan PL, Bell BP et al. (2002) Investigation of bioterrorism-related anthrax, United States, 2001: epidemiologic findings. Emerging Infectious Diseases 8(10):1019–1028Google Scholar
  125. Johnston MD, Lawson S and Otter JA (2005) Evaluation of hydrogen peroxide vapour as a method for the decontamination of surfaces contaminated with Clostridium botulinum spores. Journal of Microbiological Methods 60(3):403–411CrossRefGoogle Scholar
  126. Jones G and Vullev VI (2002a) Medium effects on the photophysical properties of terbium(III) complexes with pyridine-2,6-dicarboxylate. Photochemical & Photobiological Sciences 1(12):925–933CrossRefGoogle Scholar
  127. Jones G and Vullev VI (2002b) Medium effects on the stability of terbium(III) complexes with pyridine-2,6-dicarboxylate. Journal of Physical Chemistry A 106(35):8213–8222CrossRefGoogle Scholar
  128. Kaeberlein T, Lewis K and Epstein SS (2002) Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science 296(5570):1127–1129CrossRefGoogle Scholar
  129. Kanemitsu K, Imasaka T, Ishikawa S et al. (2005) A comparative study of ethylene oxide gas, hydrogen peroxide gas plasma, and low-temperature steam formaldehyde sterilization. Infection Control and Hospital Epidemiology 26(5):486–489CrossRefGoogle Scholar
  130. Karl DDM (1980) Cellular nucleotide measurements and applications in microbial ecology. Microbiological Reviews 44(4):739–96Google Scholar
  131. Kaufmann AF, Meltzer MI and Schmid GP (1997) The economic impact of a bioterrorist attack: Are prevention and postattack intervention programs justifiable? Emerging Infectious Diseases 3(2):83–94Google Scholar
  132. Keeton WT (1980) Biological Science. W. W. Norton & Co.: New YorkGoogle Scholar
  133. Kennedy MJ, Reader SL and Swierczynski LM (1994) Preservation records of microorganisms - evidence of the tenacity of life. Microbiology-UK 140:2513–2529Google Scholar
  134. Keynan A and Sandler N (1983) Spore research in historical perspective. In Hurst A and Gould GW (eds) The Bacterial Spore, Volume 2. Academic Press, Inc.: New York, pp 8Google Scholar
  135. Kim K, Seo J, Wheeler K et al. (2005) Rapid genotypic detection of Bacillus anthracis and the Bacillus cereus group by multiplex real-time PCR melting curve analysis. FEMS Immunology and Medical Microbiology 43(2):301–310CrossRefGoogle Scholar
  136. King D, Luna V, Cannons A et al. (2003) Performance assessment of three commercial assays for direct detection of Bacillus anthracis spores. Journal of Clinical Microbiology 41(7):3454–3455CrossRefGoogle Scholar
  137. Klee SR, Nattermann H, Becker S et al. (2006) Evaluation of different methods to discriminate Bacillus anthracis from other bacteria of the Bacillus cereus group. Journal of Applied Microbiology 100(4):673–681CrossRefGoogle Scholar
  138. Knight J (2002) US postal service puts anthrax detectors to the test. Nature 417(6889):579–579CrossRefGoogle Scholar
  139. Ko KS, Kim JM, Kim JW et al. (2003) Identification of Bacillus anthracis by rpoB sequence analysis and multiplex PCR. Journal of Clinical Microbiology 41(7):2908–2914CrossRefGoogle Scholar
  140. Koch R (1876) Untersuchungen uber Bakterien V. Die Atiologie der Milzbrandkrankheit, begrundet auf die Entwicklungsgeschichte des Bacillus anthracis. Beitr. Biol. Pflanz. 2:277–310Google Scholar
  141. Koch R (1877) Untersuchungen uber Bakterien VI. Verfahren zur Untersuchung, zum Conservieren und Photographieren. Beitr. Biol. Pflanz. 2:399–434Google Scholar
  142. Kodaka H, Fukuda K, Mizuochi S et al. (1996) Adenosine triphosphate content of microorganisms related with food spoilage. Japanese Journal of Food Microbiology 13:29–34Google Scholar
  143. Koonin EV, Makarova KS and Aravind L (2001) Horizontal gene transfer in prokaryotes: Quantification and classification. Annual Review of Microbiology 55:709–742CrossRefGoogle Scholar
  144. Lakowicz JR (1983) Principles of Fluorescence Spectroscopy. Plenum Press: New YorkGoogle Scholar
  145. Lampel KA, Dyer D, Kornegay L et al. (2004) Detection of Bacillus spores using PCR and FTA filters. Journal of Food Protection 67(5):1036–1038Google Scholar
  146. Lan R and Reeves PR (2001) When does a clone deserve a name? A perspective on bacterial species based on population genetics. Trends in Microbiology 9(9):419–424CrossRefGoogle Scholar
  147. Lawrence D, Heitefuss S and Seifert HSH (1991) Differentiation of Bacillus-anthracis from Bacillus-cereus by gas-chromatographic whole-cell fatty-acid analysis. Journal of Clinical Microbiology 29(7):1508–1512Google Scholar
  148. Leach FR and Webster JJ (1986) Commercially available firefly luciferase reagents. Methods in Enzymology 133:51–70CrossRefGoogle Scholar
  149. Lester ED and Ponce A (2002) An anthrax “smoke” detector: Online monitoring of aerosolized bacterial spores. IEEE Engineering in Medicine and Biology Magazine 21(5):38–42CrossRefGoogle Scholar
  150. Lester ED, Bearman G and Ponce A (2004) A second-generation anthrax “smoke detector”. IEEE Engineering in Medicine and Biology Magazine 23(1):130–135CrossRefGoogle Scholar
  151. Leuschner RGK and Lillford PJ (1999) Effects of temperature and heat activation on germination of individual spores of Bacillus subtilis. Letters in Applied Microbiology 29:228–232CrossRefGoogle Scholar
  152. Levi K, Higham JL, Coates D et al. (2003) Molecular detection of anthrax spores on animal fibres. Letters in Applied Microbiology 36(6):418–422Google Scholar
  153. Levine SM, Tang Y-W and Pei Z (2005) Recent advances in the rapid detection of Bacillus anthracis. Reviews in Medical Microbiology 16(4):125–133Google Scholar
  154. Levinson HS and Hyatt MT (1966) Sequence of events during Bacillus megaterium spore germination. Journal of Bacteriology 91(5):1811–1818Google Scholar
  155. Lewis JC, Snell NS and Burr HK (1960) Water permeability of bacterial spores and the concept of a contratile cortex. Science 132(3426):544–545CrossRefGoogle Scholar
  156. Li QY, Dasgupta PK, Temkin H et al. (2004) Mid-ultraviolet light-emitting diode detects dipicolinic acid. Applied Spectroscopy 58(11):1360–1363Google Scholar
  157. Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362:709–715CrossRefGoogle Scholar
  158. Logan NA (2004) Safety of aerobic endospore-forming bacteria. In Ricca E, Henriques AO, Cutting SM (eds) Bacterial Spore Formers - Probiotics and Emerging Applications. Horizon Bioscience: Norfolk, pp 93–106Google Scholar
  159. Logan NA, Carman JA, Melling J et al. (1985) Identification of Bacillus anthracis by Api Tests. Journal of Medical Microbiology 20(1):75–85CrossRefGoogle Scholar
  160. Logan NA and Turnbull PCB (2003) Bacillus and other aerobic endospore-forming bacteria. In Murray P et al. (ed) Manual of Clinical Microbiology. ASM Press: Washington, D.C., pp 445–460Google Scholar
  161. Lukasova J, Vyhnalkova J and Pacova Z (2001) Bacillus species in raw milk and in the farm environment. Milchwissenschaft-Milk Science International 56(11):609–611Google Scholar
  162. Mackay IM, Arden KE and Nitsche A (2002) Real-time PCR in virology. Nucleic Acids Research 30(6):1292–1305CrossRefGoogle Scholar
  163. Mackay IM (2004) Real-time PCR in the microbiology laboratory. Clinical Microbiology and Infection 10(3):190–212CrossRefGoogle Scholar
  164. Mahler H, Pasi A, Kramer JM et al. (1997) Fulminant liver failure in association with the emetic toxin of Bacillus cereus. The New England Journal of Medicine 336(16):1142–1148CrossRefGoogle Scholar
  165. Makino S, Iinumaokada Y, Maruyama T et al. (1993) Direct detection of Bacillus-anthracis DNA in animals by polymerase chain-reaction. Journal of Clinical Microbiology 31(3):547–551Google Scholar
  166. Makino S, Ito N, Inoue T et al. (1994) A spore-lytic enzyme released from Bacillus cereus spores during germination. Microbiology 140(6):1403–1410Google Scholar
  167. Makino S and Cheun H (2003) Application of the real-time PCR for the detection of airborne microbial pathogens in reference to the anthrax spores. Journal of Microbiological Methods 53(2):141–147CrossRefGoogle Scholar
  168. Makino SI, Cheun HI, Watarai M et al. (2001) Detection of anthrax spores from the air by real-time PCR. Letters in Applied Microbiology 33(3):237–240CrossRefGoogle Scholar
  169. Malecki J, Wiersma S, Cahill K et al. (2001) Update: Investigation of bioterrorism-related anthrax and interim guidelines for exposure management and antimicrobial therapy, October 2001. The Journal of the American Medical Association 286(18):2226–2232CrossRefGoogle Scholar
  170. Mamane-Gravetz H and Linden KG (2004) UV disinfection of indigenous aerobic spores: implications for UV reactor validation in unfiltered waters. Water Research 38(12):2898–2906CrossRefGoogle Scholar
  171. Marston CK, Gee JE, Popovic T et al. (2006) Molecular approaches to identify and differentiate Bacillus anthracis from phenotypically similar Bacillus species isolates. BMC Microbiology 6:22CrossRefGoogle Scholar
  172. Masters CI, Shallcross JA and Mackey BM (1994) Effect of stress treatments on the detection of Listeria monocytogenes and enterotoxigenic Escherichia coli by the polymerase chain reaction. Journal of Applied Bacteriology 77(1):73–79Google Scholar
  173. McBride MT, Masquelier D, Hindson BJ et al. (2003) Autonomous detection of aerosolized Bacillus anthracis and Yersinia pestis. Analytical Chemistry 75(20):5293–5299CrossRefGoogle Scholar
  174. McBride R (2007) Feds fund IQuum’s bioterror test technology into Phase 3. Mass High Tech: The Journal of New England Technology, http:/masshightech.bizjournals.comGoogle Scholar
  175. McElroy WD (1947) The energy source for bioluminescence in an isolated system. Proceedings of the National Academy of Sciences 33(11):342–345CrossRefGoogle Scholar
  176. McElroy WD and Strehler BL (1949) Factors influencing the response of the bioluminescent reaction to adenosine triphosphate. Archives of Biochemistry 22:420–433Google Scholar
  177. McFarland LV, Mulligan ME, Kwok RYY et al. (1989) Nosocomial acquisition of Clostridium-difficile infection. New England Journal of Medicine 320(4):204–210Google Scholar
  178. McFarland LV (1995) Epidemiology of infectious and iatrogenic nosocomial diarrhea in a cohort of general medicine patients. American Journal of Infection Control 23(5):295–305CrossRefGoogle Scholar
  179. McGenity TJ, Gemmell RT, Grant WD et al. (2000) Origins of halophilic microorganisms in ancient salt deposits. Environmental Microbiology 2(3):243–250CrossRefGoogle Scholar
  180. McKillip JL, Jaykus LA and Drake MM (1999) Nucleic acid persistence in heat-killed Escherichia coli O157:H7 from contaminated skim milk. Journal of Food Protection 62(8):839–844Google Scholar
  181. Melly E, Cowan AE, Setlow P (2002) Studies on the mechanism of killing of Bacillus subtilis spores by hydrogen peroxide. Journal of Applied Microbiology 93(2):316–325Google Scholar
  182. Meselson M, Guillemin J, Hugh-Jones M et al. (1994) The Sverdlovsk anthrax outbreak of 1979. Science 266(5188):1202–1208CrossRefGoogle Scholar
  183. Morgan CG and Mitchell AC (1996) Fluorescence lifetime imaging: An emerging technique in fluorescence microscopy. Chromosome Research 4(4):261–263CrossRefGoogle Scholar
  184. Murty GGK and Halvorson HO (1957) Effect of duration of heating, L-alanine and spore concentration on the oxidation of glucose by spores of Bacillus cereus var. terminalis. Journal of Bacteriology 73(2):235Google Scholar
  185. Nicholson W and Setlow P (1990) Sporulation, germination, and outgrowth. In Cutting S (ed) Molecular Biology Methods for Bacillus. John Wiley and Sons: Sussex, England, pp 391–450Google Scholar
  186. Nicholson WL, Munakata N, Horneck G et al. (2000) Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiology and Molecular Biology Reviews 64(3):548–572CrossRefGoogle Scholar
  187. Nicholson WL and Galeano B (2003) UV resistance of Bacillus anthracis spores revisited: Validation of Bacillus subtilis spores as UV surrogates for spores of B. anthracis sterne. Applied and Environmental Microbiology 69(2):1327–1330CrossRefGoogle Scholar
  188. Nicholson WL (2004) Ubiquity, longevity, and ecological roles of Bacillus spores. In Ricca E, Henriques AO, Cutting SM (eds) Bacterial Spore Formers - Probiotics and Emerging Applications. Horizon Bioscience: Norfolk, pp 1–16Google Scholar
  189. Norris JR (1962) Bacterial spore antigens - a review. Journal of General Microbiology 28(3):393–408Google Scholar
  190. Northrup MA, Benett B, Hadley D et al. (1998) A miniature analytical instrument for nucleic acids based on micromachined silicon reaction chambers. Analytical Chemistry 70(5):918–922CrossRefGoogle Scholar
  191. Nubel U, Schmidt PM, Reiss E et al. (2004) Oligonucleotide microarray for identification of Bacillus anthracis based on intergenic transcribed spacers in ribosomal DNA. FEMS Microbiology Letters 240(2):215–223CrossRefGoogle Scholar
  192. Office of Space Science, NASA (1999) Planetary Protection Provisions for Robotic Extraterrestrial Missions: Washington, D.C.Google Scholar
  193. Office of Technology Assessment, U. C. (1993) Proliferation of Weapons of Mass Destruction. U. C. Office of Technology Assessment: Washington D.C., pp 53–55Google Scholar
  194. Oggioni MR, Meacci F, Carattoli A et al. (2002) Protocol for real-time PCR identification of anthrax spores from nasal swabs after broth enrichment. Journal of Clinical Microbiology 40(11):3956–3963CrossRefGoogle Scholar
  195. Oggioni MR, Ciabattini A, Cassone M et al. (2004) Pathogenic bacilli: Bacillus anthracis and close relatives. In Ricca E, Henriques AO, Cutting SM (eds) Bacterial Spore Formers - Probiotics and Emerging Applications. Horizon Bioscience: Norfolk, pp 45–52Google Scholar
  196. Okinaka R, Pearson T and Keim P (2006) Anthrax, but not Bacillus anthracis? PLOS Pathogens 2(11):1025–1027CrossRefGoogle Scholar
  197. Okinaka RT, Cloud K, Hampton O et al. (1999) Sequence and organization of pXO1, the large Bacillus anthracis plasmid harboring the anthrax toxin genes. Journal of Bacteriology 181(20):6509–6515Google Scholar
  198. Onyenwoke RU, Brill JA, Farahi K et al. (2004) Sporulation genes in members of the low G+C Gram-type-positive phylogenetic branch (Firmicutes). Archives of Microbiology 182(2-3):182–192Google Scholar
  199. Pannucci J, Okinaka RT, Sabin R et al. (2002a) Bacillus anthracis pXO1 plasmid sequence conservation among closely related bacterial species. Journal of Bacteriology 184(1):134–141CrossRefGoogle Scholar
  200. Pannucci J, Okinaka RT, Williams E et al. (2002b) DNA sequence conservation between the Bacillus anthracis pXO2 plasmid and genomic sequence from closely related bacteria. BMC Genomics 3:34CrossRefGoogle Scholar
  201. Papaparaskevas J, Houhoula DP, Papadimitriou M et al. (2004) Ruling out Bacillus anthracis. Emerging Infectious Diseases 10(4):732–735Google Scholar
  202. Park TJ, Park JP, Seo GM et al. (2006) Rapid and accurate detection of Bacillus anthracis spores using peptide-quantum dot conjugates. Journal of Microbiology and Biotechnology 16(11):1713–1719Google Scholar
  203. Parsons P (1996) Dusting off panspermia. Nature 383(6597):221–222CrossRefGoogle Scholar
  204. Pastuszka JS, Paw UKT, Lis DO et al. (2000) Bacterial and fungal aerosol in indoor environment in Upper Silesia, Poland. Atmospheric Environment 34(22):3833–3842CrossRefGoogle Scholar
  205. Patra G, Sylvestre P, Ramisse V et al. (1996) Isolation of a specific chromosomic DNA sequence of Bacillus anthracis and its possible use in diagnosis. FEMS Immunology and Medical Microbiology 15(4):223–231CrossRefGoogle Scholar
  206. Patra G, Vaissaire J, Weber-Levy M et al. (1998) Molecular characterization of Bacillus strains involved in outbreaks of anthrax in France in 1997. Journal of Clinical Microbiology 36(11):3412–3414Google Scholar
  207. Patra G, Williams LE, Qi Y et al. (2002) Rapid genotyping of Bacillus anthracis strains by real-time polymerase chain reaction. In Domestic Animal/Wildlife Interface: Issue for Disease Control, Conservation, Sustainable Food Production, and Emerging Diseases. New York Academy of Sciences: New York, pp 106–111Google Scholar
  208. Pellegrino PM, Fell NF, Rosen DL et al. (1998) Bacterial endospore detection using terbium dipicolinate photoluminescence in the presence of chemical and biological materials. Analytical Chemistry 70(9):1755–1760CrossRefGoogle Scholar
  209. Pennington OJ, Van Mellaert L, Theys J et al. (2004) Recombinant clostridial spores in tumor therapy. In Ricca E, Henriques AO, Cutting SM (eds) Bacterial Spore Formers - Probiotics and Emerging Applications. Horizon Bioscience: Norfolk, pp 207–216Google Scholar
  210. Perry JJ and Foster JW (1955) Studies on the biosynthesis of dipicolinic acid in spores of Bacillus cereus var. mycoides. Journal of Bacteriology 69:337–346CrossRefGoogle Scholar
  211. Philip ES (1989) A review of bioluminescent ATP techniques in rapid microbiology. Journal of Bioluminescence and Chemiluminescence 4(1):375–380CrossRefGoogle Scholar
  212. Phillips AP and Martin KL (1983) Immunofluorescence analysis of Bacillus spores and vegetative cells by flow-cytometry. Cytometry 4(2):123–131CrossRefGoogle Scholar
  213. Potts M (1994) Desiccation tolerance of prokaryotes. Microbiological Reviews 58(4):755–805Google Scholar
  214. Poulis JJA, de Pijper MM, Mossel DDA et al. (1993) Assessment of cleaning and disinfection in the food industry with the rapid ATP-bioluminescence technique combined with the tissue fluid contamination test and a conventional microbiological method. International Journal of Food Microbiology 20(2):109–16CrossRefGoogle Scholar
  215. Powell E (1957) The appearance of bacterial spores under phase-contrast illumination. Journal of Applied Bacteriology 3:342–348MathSciNetGoogle Scholar
  216. Powell JF (1953) Isolation of dipicolinic acid (pyridine-2-6-dicarboxylic acid) from spores of Bacillus megatherium. Biochemical Journal 54(2):210–211MathSciNetGoogle Scholar
  217. Prescott SC and Dunn CG (1959) Industrial Microbiology. McGraw Hill: New York, pp 250–284Google Scholar
  218. Centers of Disease Control and Prevention (2002) Evaluation of postexposure antibiotic prophylaxis to prevent anthrax.(Reprinted from MMWR, vol 51, pg 59, 2002) Journal of the American Medical Association 287(6):710CrossRefGoogle Scholar
  219. Priha O, Hallamaa K, Saarela M et al. (2004) Detection of Bacillus cereus group bacteria from cardboard and paper with real-time PCR. Journal of Industrial Microbiology & Biotechnology 31(4):161–169Google Scholar
  220. Pulvertaft RJV and Haynes JA (1951) Adenosine and spore germination: phase contrast studies. Journal of General Microbiology 5:657–663Google Scholar
  221. Qi YA, Patra G, Liang XD et al. (2001) Utilization of the rpoB gene as a specific chromosomal marker for real-time PCR detection of Bacillus anthracis. Applied and Environmental Microbiology 67(8):3720–3727Google Scholar
  222. Radnedge L, Agron PG, Hill KK et al. (2003) Genome differences that distinguish Bacillus anthracis from Bacillus cereus and Bacillus thuringiensis. Applied and Environmental Microbiology 69(5):2755–2764CrossRefGoogle Scholar
  223. Ramisse V, Patra G, Vaissaire J et al. (1999) The Ba813 chromosomal DNA sequence effectively traces the whole Bacillus anthracis community. Journal of Applied Microbiology 87(2):224–228CrossRefGoogle Scholar
  224. Rantakokko-Jalava K and Viljanen MK (2003) Application of Bacillus anthracis PCR to simulated clinical samples. Clinical Microbiology and Infection 9(10):1051–1056CrossRefGoogle Scholar
  225. Rappe MS, Connon SA, Vergin KL et al. (2002) Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418:630–633CrossRefGoogle Scholar
  226. Rasko DA, Altherr MR, Han CS et al. (2005) Genomics of the Bacillus cereus group of organisms. FEMS Microbiology Reviews 29(2):303–329CrossRefGoogle Scholar
  227. Read TD, Peterson SN, Tourasse N et al. (2003) The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria. Nature 423(6935):81–86CrossRefGoogle Scholar
  228. Ricca E, Henriques AO and Cutting SM (eds) (2004) Bacterial Spore Formers - Probiotics and Emerging Applications. Horizon Bioscience: NorfolkGoogle Scholar
  229. Rice EW, Fox KR, Miltner RJ et al. (1996) Evaluating plant performance with endospores. Journal American Water Works Association 88(9):122–130Google Scholar
  230. Rijpens NP, Nancy P, Herman LM et al. (2002) Molecular methods for identification and detection of bacterial food pathogens. Journal of AOAC International 85(4):984–995Google Scholar
  231. Rivera VR, Merill GA, White JA et al. (2003) An enzymatic electrochemiluminescence assay for the lethal factor of anthrax. Analytical Biochemistry 321(1):125–130CrossRefGoogle Scholar
  232. Rosen DL, Sharpless C and McGown LB (1997) Bacterial spore detection and determination by use of terbium dipicolinate photoluminescence. Analytical Chemistry 69(6):1082–1085CrossRefGoogle Scholar
  233. Rosen DL (1998) Wavelength pair selection for bacterial endospore detection by use of terbium dipicolinate photoluminescence. Applied Optics 37(4):805–807CrossRefGoogle Scholar
  234. Rosen DL (1999) Bacterial endospore detection using photoluminescence from terbium dipicolinate. Reviews in Analytical Chemistry 18(1-2):1–21Google Scholar
  235. Ross KFA and Billing E (1957) The water and solid content of living bacterial spores and vegetative cells as indicated by refractive index measurements. Journal of General Microbiology 16:418–425Google Scholar
  236. Roszak DB and Colwell RR (1987) Survival strategies of bacteria in the natural environment. Microbiological Reviews 51(3):365–379Google Scholar
  237. Rowe CA, Tender LM, Feldstein MJ et al. (1999) Array biosensor for simultaneous identification of bacterial, viral, and protein analytes. Analytical Chemistry 71(17):3846–3852CrossRefGoogle Scholar
  238. Rowley DB and Feeherry F (1970) Conditions affecting germination of Clostridium botulinum 62A spores in a chemically defined medium. Journal of Applied Bacteriology 104(3):1151–1157Google Scholar
  239. Ryu C, Lee K, Yoo C et al. (2003) Sensitive and rapid quantitative detection of anthrax spores isolated from soil samples by real-time PCR. Microbiology and Immunology 47(10):693–699Google Scholar
  240. Sabbatini N, Guardigli M and Lehn JM (1993) Luminescent lanthanide complexes as photochemical supramolecular devices. Coordination Chemistry Reviews 123(1-2):201–228CrossRefGoogle Scholar
  241. Sacks LE (1990) Chemical germination of native and cation-exchanged bacterial-spores with trifluoperazine. Applied and Environmental Microbiology 56(4):1185–1187Google Scholar
  242. Saiki RK, Scharf S, Faloona F et al. (1985) Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230(4732):1350–1354CrossRefGoogle Scholar
  243. Saiki RK, Gelfand DH, Stoffel S et al. (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239(4839):487–491CrossRefGoogle Scholar
  244. Sanderson WT, Stoddard RR, Echt AS et al. (2004) Bacillus anthracis contamination and inhalational anthrax in a mail processing and distribution center. Journal of Applied Microbiology 96(5):1048–1056CrossRefGoogle Scholar
  245. Santo LY and Doi RH (1974) Ultrastructural analysis during germination and outgrowth of Bacillus subtilis spores. Journal of Bacteriology 120(1):475–481Google Scholar
  246. Schoeni JLJL and Wong ACACL (2005) Bacillus cereus food poisoning and its toxins. Journal of Food Protection 68(3):636–48Google Scholar
  247. Schuch R, Nelson D and Fischetti VA (2002) A bacteriolytic agent that detects and kills Bacillus anthracis. Nature 418(6900):884–889CrossRefGoogle Scholar
  248. Senesi S (2004) Bacillus spores as probiotic products for human use. In Ricca E, Henriques AO, Cutting SM (eds) Bacterial Spore Formers - Probiotics and Emerging Applications. Horizon Bioscience: Norfolk, pp 131–142Google Scholar
  249. Setlow P and Kornberg A (1970) Biochemical studies of bacterial sporulation and germination. XXII. Energy metabolism in early stages of germination of Bacillus megaterium spores. Journal of Biological Chemistry 245(14):3637–3644Google Scholar
  250. Setlow P (1995) Mechanisms for the prevention of damage to DNA in spores of Bacillus species. Annual Review of Microbiology 49:29–54CrossRefGoogle Scholar
  251. Setlow P (2001) Resistance of spores of Bacillus species to ultraviolet light. Environmental and Molecular Mutagenesis 38(2-3):97–104CrossRefGoogle Scholar
  252. Setlow P (2003) Spore germination. Current Opinion in Microbiology 6(6):550–556CrossRefGoogle Scholar
  253. Shafaat HS and Ponce A (2006) Applications of a rapid endospore viability assay for monitoring UV inactivation and characterizing Arctic ice cores. Applied and Environmental Microbiology 72(10):6808–6814CrossRefGoogle Scholar
  254. Shangkuan YH, Chang YH, Yang JF et al. (2001) Molecular characterization of Bacillus anthracis using multiplex PCR, ERIC-PCR and RAPD. Letters in Applied Microbiology 32(3):139–145CrossRefGoogle Scholar
  255. Sheridan GE, Masters CI, Shallcross JA et al. (1998) Detection of mRNA by reverse transcription-PCR as an indicator of viability in Escherichia coli cells. Applied and Environmental Microbiology 64(4):1313–1318Google Scholar
  256. Singh RP, Setlow B and Setlow P (1977) Levels of small molecules and enzymes in the mother cell compartment and the forespore of sporulating Bacillus megaterium. Journal of Bacteriology 130:1130–1138Google Scholar
  257. Sinha S (1983) Systematics and the Properties of the Lanthanides (NATO Science Series C). Springer: Dordrecht, HollandGoogle Scholar
  258. Sneath PHA (1962) Longevity of micro-organisms. Nature 195(4842):643–646CrossRefGoogle Scholar
  259. Song JM, Culha M, Kasili PA et al. (2005) A compact CMOS biochip immunosensor towards the detection of a single bacteria. Biosensors & Bioelectronics 20(11):2203–2209CrossRefGoogle Scholar
  260. Speight SE, Hallis BA, Bennett AM et al. (1997) Enzyme-linked immunosorbent assay for the detection of airborne microorganisms used in biotechnology. Journal of Aerosol Science 28(3):483–492CrossRefGoogle Scholar
  261. Stopa PJ, Tieman D, Coon PA et al. (1999) Detection of biological aerosols by luminescence techniques. Field Analytical Chemistry & Technology 3(4-5):283–290CrossRefGoogle Scholar
  262. Stopa PJ (2000) The flow cytometry of Bacillus anthracis spores revisited. Cytometry 41(4):23–244Google Scholar
  263. Szabo EA and Mackey BM (1999) Detection of Salmonella enteritidis by reverse transcription-polymerase chain reaction (PCR). International Journal of Food Microbiology 51(2-3):113–122CrossRefGoogle Scholar
  264. Tahernia AC (1967) Treatment of anthrax in children. Archives of disease in childhood 42(222):181–182Google Scholar
  265. Thore AA, Ansehn SS, Lundin AA et al. (1975) Detection of bacteriuria by luciferase assay of adenosine triphosphate. Journal of Clinical Microbiology 1(1):1–8Google Scholar
  266. Ting PT and Freiman A (2004) The story of Clostridium botulinum: from food poisoning to Botox. Clinical Medicine 4(3):258–261Google Scholar
  267. Turnbull PCB, Hutson RA, Ward MJ et al. (1992) Bacillus anthracis but not always anthrax. Journal of Applied Bacteriology 72(1):21–28Google Scholar
  268. Tyndall J (1877) Further researches on the deportment and vital persistence of putrefactive and infective organisms from a physical point of view. Philosophical Transactions of the Royal Society of London 167:149–206CrossRefGoogle Scholar
  269. Ugarova NN, Brovko YL and Kutuzova GD (1993) Bioluminescence and bioluminescent analysis: recent development in the field. Biokhimiya 58:1351–1372Google Scholar
  270. Vary JC and Halvorson HO (1965) Kinetics of germination of Bacillus spores. Journal of Bacteriology 89:1340–1347Google Scholar
  271. Venkateswaran KK, Hattori NN, La Duc MTMT et al. (2003) ATP as a biomarker of viable microorganisms in clean-room facilities. Journal of Microbiological Methods 52(3):367–77CrossRefGoogle Scholar
  272. Vereb G, Jares-Erijman E, Selvin PR, Jovin TM (1998) Temporally and spectrally resolved imaging microscopy of lanthanide chelates. Biophysical Journal 74(5):2210–2222Google Scholar
  273. Volokhov D, Pomerantsev A, Kivovich V et al. (2004) Identification of Bacillus anthracis by multiprobe microarray hybridization. Diagnostic Microbiology and Infectious Disease 49(3):163–171CrossRefGoogle Scholar
  274. Vreeland RH, Rosenzweig WD and Powers DW (2000) Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature 407(6806):897–900CrossRefGoogle Scholar
  275. Walker GT, Fraiser MS, Schram JL et al. (1992a) Strand displacement amplification - an isothermal, in vitro DNA amplification technique. Nucleic Acid Research 20(7):1691–1696CrossRefGoogle Scholar
  276. Walker GT, Little MC, Nadeau JG et al. (1992b) Isothermal in vitro amplification of DNA by a restriction enzyme/DNA polymerase system. Proceedings of the National Academy of Sciences 89(1):392–396CrossRefGoogle Scholar
  277. Wang SH, Wen JK, Zhou YF et al. (2004) Identification and characterization of Bacillus anthracis by multiplex PCR on DNA chip. Biosensors & Bioelectronics 20(4):807–813Google Scholar
  278. Webster JJ, Walker BG, Ford SR et al. (1998) Determination of sterilization effectiveness by measuring bacterial growth in a biological indicator through firefly luciferase determination of ATP. Journal of Bioluminescence and Chemiluminescence 2(3):129–133CrossRefGoogle Scholar
  279. Weis CP, Intrepido AJ, Miller AK, Cowin PG, Durno MA, Gebhardt JS, Bull R (2002) Secondary aerosolization of viable Bacillus anthracis spores in a contaminated US Senate Office. Journal of American Medical Association 288(22):2853–2858Google Scholar
  280. Weyant R, Ezzell J and Popovic T (2001) Basic laboratory protocols for the presumptive identification of Bacillus anthracis. Centers for Disease Control and Prevention: Atlanta.Google Scholar
  281. Wilcox MH and Fawley WN (2000) Hospital disinfectants and spore formation by Clostridium difficile The Lancet 356(9238):1324–1324CrossRefGoogle Scholar
  282. Wilson WJ, Erler AM, Nasarabadi SL et al. (2005) A multiplexed PCR-coupled liquid bead array for the simultaneous detection of four biothreat agents. Molecular and Cellular Probes 19(2):137–144CrossRefGoogle Scholar
  283. Woese C and Morowitz HJ (1958) Kinetics of the release of dipicolinic acid from spores of Bacillus subtilis. Journal of Bacteriology 76(1):81–83Google Scholar
  284. Wuytack EY, Boven S, Michiels CW (1998) Comparative study of pressure-induced germination of Bacillus subtilis spores at low and high pressures. Applied and Environmental Microbiology 64(9):3220–3224Google Scholar
  285. Xiao M and Selvin PR (1999) An improved instrument for measuring time-resolved lanthanide emission and resonance energy transfer. Review of Scientific Instruments 70(10):3877–3881CrossRefGoogle Scholar
  286. Yamada S, Ohashi E, Agata N et al. (1999) Cloning and nucleotide sequence analysis of gyrB of Bacillus cereus, B-thuringinesis, B-mycoides, and B-anthracis and their application to the detection of B-cereus in rice. Applied and Environmental Microbiology 65(4):1483–1490Google Scholar
  287. Yaron S and Matthews KR (2002) A reverse transcriptase-polymerase chain reaction assay for detection of viable Escherichia coli O157:H7: investigation of specific target genes. Journal of Applied Microbiology 92(4):633–640CrossRefGoogle Scholar
  288. Yung PT, Kempf MJ and Ponce A (2006) A rapid single spore enumeration assay. IEEE Aerospace Conference, Big Sky, MontanaGoogle Scholar
  289. Yung PT, Lester ED, Bearman G et al. (2007) An automated front-end monitor for anthrax surveillance systems based on the rapid detection of airborne endospores. Biotechnology and Bioengineering 98(4):864–871CrossRefGoogle Scholar
  290. Yung PT, Shafaat HS, Connon SA et al. (2007) Quantification of viable endospores from a Greenland ice core. FEMS Microbiology Ecology 59(2):300–306CrossRefGoogle Scholar
  291. Zahavy E, Fisher M, Bromberg A et al. (2003) Detection of frequency resonance energy transfer pair on double-labeled microsphere and Bacillus anthracis spores by flow cytometry. Applied and Environmental Microbiology 69(4):2330–2339CrossRefGoogle Scholar
  292. Zhang R and Zhang CT (2003) Identification of genomic islands in the genome of Bacillus cereus by comparative analysis with Bacillus anthracis. Physiological Genomics 16(1):19–23CrossRefGoogle Scholar
  293. Zink DL (1997) The impact of consumer demands and trends on food processing. Emerging Infectious Diseases 3(4):467–469Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Adrian Ponce
    • 1
  • Stephanie A. Connon
    • 1
  • Pun To Yung
    • 1
  1. 1.California Institute of Technology, 91125/Jet Propulsion LaboratoryPasadena

Personalised recommendations