In this chapter we summarize briefly the use of cantilever sensors for pathogen detection. Both micro- and macro-cantilever sensors have been investigated for detecting pathogens in liquid samples. In this review we examine previous work and summarize progress on using piezoelectric-excited millimeter-sized cantilever (PEMC) sensors developed in the author’s laboratory. PEMC sensors immobilized with an antibody specific to the target pathogen has been shown to be very highly sensitive for detecting one cell per mL in one liter samples and 10 cells per mL in 10,mL samples, both in buffers and at similar concentrations in food matrices. After a brief introduction, the physics of sensing is reviewed, followed by a characterization of PEMC sensors, and finally the results from detection experiments are described.


Resonance Frequency Quartz Crystal Microbalance Piezoelectric Layer Bacillus Anthracis Ground Beef 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdel-Hamid I, Ivnitski D, Atanasov P, Wilkins E (1999a) Highly sensitive flow-injection immunoassay system for rapid detection of bacteria. Analytica Chimica Acta 399(1–2):99–108CrossRefGoogle Scholar
  2. Abdel-Hamid I, Ivnitski D, Atanasov P, Wilkins E (1999b) Flow-through immunofiltration assay system for rapid detection of E. coli O157:H7. Biosensors and Bioelectronics 14(3):309–316CrossRefGoogle Scholar
  3. Arora K, Chand S, Malhotra BD (2006) Recent developments in bio-molecular electronics techniques for food pathogens. Analytica Chimica Acta 568(1–2):259–274CrossRefGoogle Scholar
  4. Balasubramanian S, Sorokulova IB, Vodyanoy VJ, Simonian AL (2007) Lytic phage as a specific and selective probe for detection of Staphylococcus aureus: A surface plasmon resonance spectroscopic study. Biosensors and Bioelectronics 22(6):948–955CrossRefGoogle Scholar
  5. Boskovic S, Chon JWM, Mulvaney P, Sader JE (2002) Rheological measurements using microcantilevers. Journal of Rheology 46(4):891–899CrossRefGoogle Scholar
  6. Campbell GA, Mutharasan R (2005) Sensing of liquid level at micron resolution using self-excited millimeter-sized PZT-cantilever. Sensors and Actuators A: Physical 122(2):326–334CrossRefGoogle Scholar
  7. Campbell GA, Mutharasan R (2006a) Use of piezoelectric-excited millimeter-sized cantilever sensors to measure albumin interaction with self-assembled monolayers of alkanethiols having different functional headgroups. Analytical Chemistry 78(7):2328–2334CrossRefGoogle Scholar
  8. Campbell GA, Mutharasan R (2006b) Detection of Bacillus anthracis spores and a model protein using PEMC sensors in a flow cell at 1,mL/min. Biosensors and Bioelectronics 22(1):78–85CrossRefGoogle Scholar
  9. Campbell GA, Mutharasan R (2006c) Piezoelectric-excited millimeter-sized cantilever (PEMC) sensors detect Bacillus anthracis at 300 spores/mL. Biosensors and Bioelectronics 21:1684–1692CrossRefGoogle Scholar
  10. Campbell GA, Mutharasan R (2006d) Use of Piezoelectric-Excited Millimeter-Sized Cantilever Sensors To Measure Albumin Interaction with Self-Assembled Monolayers of Alkanethiols Having Different Functional Headgroups. Anal. Chem. 78(7):2328–2334CrossRefGoogle Scholar
  11. Campbell GA, Mutharasan R (2006e) PEMC Sensor’s Mass Change Sensitivity is 20,pg/Hz under Liquid Immersion. Biosensors and Bioelectronics 22(1):35–41CrossRefGoogle Scholar
  12. Campbell GA, Mutharasan R (2007a) A method of measuring Escherichia Coli O157:H7 at 1 Cell/mL in 1 liter sample using antibody functionalized Piezoelectric-Excited Millimeter-Sized Cantilever sensor. Environ. Sci. Technol. 41(5):1668–1674CrossRefGoogle Scholar
  13. Campbell GA, Mutharasan R (2007c) Method of measuring Bacillus anthracis spores in the presence of copious amounts of Bacillus thuringiensis and Bacillus cereus. Anal. Chem. 79(3):1145–1152CrossRefGoogle Scholar
  14. Campbell GA, Uknalis J, Tu S-I, Mutharasan R (2007b) Detection of Escherichia coli O157:H7 in ground beef samples using piezoelectric excited millimeter-sized cantilever (PEMC) sensors. Biosensors and Bioelectronics 22(7):1296–1302CrossRefGoogle Scholar
  15. Craighead HG (2003) Nanostructure science and technology: Impact and prospects for biology. Journal of Vacuum Science & Technology A21:S216–S221CrossRefGoogle Scholar
  16. Davila AP, Jang J, Gupta AK, Walter T, Aronson A, Bashir R (2007) Microresonator Mass Sensors for Detection of Bacillus anthracis Sterne Spores in Air and Water. Biosens. Bioelectron. 22:3028–3035CrossRefGoogle Scholar
  17. Detzel AJ, Campbell GA, Mutharasan R (2006) Rapid assessment of Escherichia coli by growth rate on piezoelectric-excited millimeter-sized cantilever (PEMC) sensors. Sensors and Actuators B: Chemical 117(1):58–64CrossRefGoogle Scholar
  18. Dhayal B, Henne WA, Doorneweerd DD, Reifenberger RG, Low PS (2006) Detection of Bacillus subtilis Spores Using Peptide-Functionalized Cantilever Arrays. J. Am. Chem. Soc. 128(11):3716–3721CrossRefGoogle Scholar
  19. Gfeller KY, Nugaeva N, Hegner M (2005) Micromechanical oscillators as rapid biosensor for the detection of active growth of Escherichia coli. Biosens. Bioelectron. 21(3):528–533CrossRefGoogle Scholar
  20. Ghatnekar-Nilsson S, Lindahl J, Dahlin A, Stjernholm T, Jeppesen S, Hook F, Montelius L (2005b) Phospholipid vesicle adsorption measured in situ with resonating cantilevers in a liquid cell. Nanotechnology 16(9):1512–1516CrossRefGoogle Scholar
  21. Gupta A, Akin D, Bashir R (2004) Single virus particle mass detection using microresonators with nanoscale thickness. Applied Physics Letters 84(11):1976–1978CrossRefGoogle Scholar
  22. Hancock REW, McPhee JB (2005) Salmonella’s Sensor for Host Defense Molecules. Cell 122(3):320–322CrossRefGoogle Scholar
  23. Hermanson GT (1996) Bioconjugate Technique. Elsevier, San Diego, CaliforniaGoogle Scholar
  24. Ilic B, Craighead HG, Krylov S, Senaratne W, Ober C, Neuzil P (2004a) Attogram detection using nanoelectromechanical oscillators. Journal of Applied Physics 95:3694–3703CrossRefGoogle Scholar
  25. Ilic B, Czaplewski D, Craighead HG, Neuzil P, Campagnolo C, Batt C (2000) Mechanical resonant immunospecific biological detector. Applied Physics Letters 77(3):450–452CrossRefGoogle Scholar
  26. Ilic B, Czaplewski D, Zalalutdinov M, Craighead HG, Neuzil P, Campagnolo C, Batt C (2001) Single cell detection with micromechanical oscillators. Journal of Vacuum Science & Technology B 19(6):2825–2828CrossRefGoogle Scholar
  27. Ilic B, Yang Y, Craighead HG (2004b) Virus detection using nanoelectromechanical devices. Applied Physics Letters 85(13):2604–2606CrossRefGoogle Scholar
  28. Inaba S, Akaishi K, Mori T, Hane K (1993) Analysis of resonance characteristics of a cantilever vibrated photothermally in a liquid. Journal of Applied Physics 73(6):2654–2658CrossRefGoogle Scholar
  29. Ivnitski D, Abdel-Hamid I, Atanasov P, Wilkins E (1999) Biosensors for detection of pathogenic bacteria. Biosensors and Bioelectronics 14(7):599–624CrossRefGoogle Scholar
  30. Johnson L, Gupta ATK, Ghafoor A, Akin D, Bashir R (2006) Characterization of vaccinia virus particles using microscale silicon cantilever resonators and atomic force microscopy. Sens. Actuator B-Chem. 115(1): 189–197CrossRefGoogle Scholar
  31. Koubova V, Brynda E, Karasova L, Skvor J, Homola J, Dostalek J, Tobiska P, Rosicky J (2001) Detection of foodborne pathogens using surface plasmon resonance biosensors. Sensors and Actuators B: Chemical 74(1–3): 100–105CrossRefGoogle Scholar
  32. Lavrik NV, Sepaniak MJ, Datskos PG (2004) Cantilever transducers as a platform for chemical and biological sensors. Rev. Sci. Instrum. 75(6):2229–2253CrossRefGoogle Scholar
  33. Lazcka O, Campo FJD, Munoz FX (2007) Pathogen detection: A perspective of traditional methods and biosensors. Biosensors and Bioelectronics 22(7):1205–1217CrossRefGoogle Scholar
  34. Maraldo D, Mutharasan R (2007a) Optimization of antibody immobilization for sensing using piezoelectrically excited-millimeter-sized cantilever (PEMC) sensors. Sensors and Actuators B: Chemical 123 (1):474–479CrossRefGoogle Scholar
  35. Maraldo D, Mutharasan R (2007b) 10-minute assay for detecting Escherichia coli O157:H7 in ground beef samples using Piezoelectrically-Excited Millimeter-Sized Cantilever (PEMC) sensors. Journal of Food Protection, 70(7):1670–1677Google Scholar
  36. Maraldo D, Mutharasan R (2007d) Preparation-free method for detecting Escherichia coli O157:H7 in spinach, spring lettuce mix, and ground beef matrices. Journal of Food Protection, 70(11):2651–2655Google Scholar
  37. Maraldo D, Rijal K, Campbell G, Mutharasan R (2007c) Method for Label-Free Detection of Femtogram Quantities of Biologics in Flowing Liquid Samples. Analytical Chemistry 79 (7):2762–2770CrossRefGoogle Scholar
  38. Naik T, Longmire EK, Mantell SC (2003) Dynamic response of a cantilever in liquid near a solid wall. Sensors and Actuators A: Physical 102(3):240–254CrossRefGoogle Scholar
  39. Nugaeva N, Gfeller KY, Backmann N, Lang HP, Duggelin M, Hegner M (2005) Micromechanical cantilever array sensors for selective fungal immobilization and fast growth detection. Biosens. Bioelectron. 21(6):849–856CrossRefGoogle Scholar
  40. Oli MW, McArthur WP, Brady LJ (2006) A whole cell BIAcore assay to evaluate P1-mediated adherence of Streptococcus mutans to human salivary agglutinin and inhibition by specific antibodies. Journal of Microbiological Methods 65(3):503–511CrossRefGoogle Scholar
  41. Prescott LM, Harley JP, Klein DA (2005) Microbiology, 6th ed. McGraw-Hill Education, BostonGoogle Scholar
  42. Rijal K, Leung A, Shankar PM, Mutharasan R (2005) Detection of pathogen Escherichia coli O157:H7 at 70 cells/mL using antibody-immobilized biconical tapered fiber sensors. Biosensors and Bioelectronics 21(6): 871–880CrossRefGoogle Scholar
  43. Rijal K, Mutharasan R (2007) Piezoelectric-excited millimeter-sized cantilever sensors detect density differences of a few micrograms/mL in liquid medium. Sensors and Actuators B: Chemical, 121(1):237–244CrossRefGoogle Scholar
  44. Sader JE (1998) Frequency Response of Cantilever Beams Immersed in viscous fluids with applications to the atomic force microscope. Journal of Applied Physics 84(1):64–76CrossRefGoogle Scholar
  45. Su XL, Li Y (2005) Surface plasmon resonance and quartz crystal microbalance immunosensors for detection of Escherichia coli O157: H7. Transactions of the Asae 48(1):405–413Google Scholar
  46. Taylor AD, Ladd J, Yu Q, Chen S, Homola J, Jiang S (2006) Quantitative and simultaneous detection of four foodborne bacterial pathogens with a multi-channel SPR sensor. Biosensors and Bioelectronics 22(5):752–758CrossRefGoogle Scholar
  47. Taylor AD, Yu Q, Chen S, Homola J, Jiang S (2005) Comparison of E. coli O157:H7 preparation methods used for detection with surface plasmon resonance sensor. Sensors and Actuators B: Chemical 107(1):202–208CrossRefGoogle Scholar
  48. Vaughan RD, Carter RM, O’Sullivan CK, Guilbault GG (2003) A quartz crystal microbalance (QCM) sensor for the detection of Bacillus cereus. Analytical Letters 36(4):731–747CrossRefGoogle Scholar
  49. Vaughan RD, O’Sullivan CK, Guilbault GG (2001) Development of a quartz crystal microbalance (QCM) immunosensor for the detection of Listeria monocytogenes. Enzyme and Microbial Technology 29(10): 635–638CrossRefGoogle Scholar
  50. Waswa J, Irudayaraj J, DebRoy C (2007) Direct detection of E. coli O157:H7 in selected food systems by a surface plasmon resonance biosensor. LWT-Food Science and Technology 40(2):187–192CrossRefGoogle Scholar
  51. Weeks BL, Camarero J, Noy A, Miller AE, Stanker L, De Yoreo JJ (2003) A microcantilever-based pathogen detector. Scanning 25(6):297–299Google Scholar
  52. Yi JW, Shih WY, Mutharasan R, Shih WH (2003) In situ cell detection using piezoelectric lead zirconate titanate-stainless steel cantilevers. Journal of Applied Physics 93(1):619–625CrossRefGoogle Scholar
  53. Zezza F, Pascale M, Mule G, Visconti A (2006) Detection of Fusarium culmorum in wheat by a surface plasmon resonance-based DNA sensor. Journal of Microbiological Methods 66(3):529–537CrossRefGoogle Scholar
  54. Zhang J, Ji HF (2004) An anti E-coli O157 : H7 antibody-immobilized microcantilever for the detection of Escherichia coli (E-coli). Analytical Sciences 20(4):585–587CrossRefGoogle Scholar
  55. Zhu Q, Shih WY, Shih W-H (2007a) In-Situ, In-Liquid, All-Electrical Detection of Salmonella typhimurium Using Lead Titanate Zirconate/Gold-Coated Glass Cantilevers at any Dipping Depth. Biosensors and Bioelectronics, 22(12):3132–3138CrossRefGoogle Scholar
  56. Zhu Q, Shih WY, Shih W-H (2007b) Real-Time, Label-Free, All-Electrical Detection of Salmonella typhimurium Using Lead Titanate Zirconate/Gold-Coated Glass Cantilevers at any Relative Humidity. Sensors and Actuators B: Chemical, 125(2):379–388CrossRefGoogle Scholar
  57. Ziegler C (2004) Cantilever-based biosensors. Anal. Bioanal. Chem. 379(7–8):946–959Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Raj Mutharasan
    • 1
  1. 1.Department of Chemical and Biological EngineeringDrexel UniversityPhiladelphia

Personalised recommendations