Skip to main content

Abstract

In situations of widespread infectious disease an action that might result, the rapid diagnosis of pathogenic states will assist first responders in implementing prompt treatments, in a huge reduction in the number of illnesses and deaths. Currently available detection/diagnostic procedures are either time-consuming (8–48 h) and require enrichment and culturing of bacteria before testing, or provide only qualitative results. Magnetic immunoassay technology appears to have particularly superior performance over other immunodetection methods. A typical magnetic immunoassay entails a capture part and a detection part, between which the target is immobilized. The capture part of the immunoassay consists of magnetic particles functionalized to capture the target from the sample. The immobilized target is then sandwiched between the capture and detection complexes and subjected to a detection process that will provide accurate and rapid results, most of the time in a matter of minutes. Another important advantage that a sensitive magnetic immunoassay confers is the reduced volume of samples and reagents needed. This chapter discusses the elements associated with a magnetic immunoassay specifically designed for the rapid detection of pathogens. The chapter presents a review of the different techniques used in the synthesis and encapsulation of magnetic particles, as well as strategies for the immobilization and detection of the targeted pathogen. Several magnetic separation strategies are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdel-Hamid I, Ivnitski D, Atanasov P and Wilkins E (1999) Flow-through immunofiltration assay system for rapid detection of E. coli O157:H7. Biosens Bioelectron 14(3):309–316

    Google Scholar 

  • Annas GJ (2002) Bioterrorism, Public Health, and Civil Liberties. N. Engl J Med. 346 (17):1337–1342

    Google Scholar 

  • ANSYS Co. (1997) Product Literature, New York

    Google Scholar 

  • Baibich MN, Broto JM, Fert A, Nguyen Van Dau F, Petroff F (1988) Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices. Physical Review Letters 61:2472–2475

    Google Scholar 

  • Baselt D, Lee GU, Natesan M, Metzger SW, Sheehan PE, Colton RJ (1998) A biosensor based on magnetoresistance technology. Biosens. Bioelectron. 13:731–739

    Google Scholar 

  • Bauer AW, Kirby WMM, Scherris JC and Truck M (1966) Antibiotic susceptibility testing standardised single disk method.Am. J. Clin. Pathol. 45:493–496

    Google Scholar 

  • Bayliss CL (1999) Detection and Separation of Pathogens and their Toxins. In: MAFF Research Program FS 12, MAFF UK, Center for Applied Microbiology and Research, Porton Down

    Google Scholar 

  • Binasch G, Grünberg P, Saurenbach F and Zinn W (1989) Enhanced Magnetoresistance in Layered Magnetic Structures with Antiferromagnetic Interlayer Exchange. Physical Review B, Condensed Matter and Materials Physics 39:4828–4830

    Google Scholar 

  • Blackburn C, Patel PD and Gibbs PA (1991) Separation and Detection of Salmonellae Using Immunomagnetic Particles. Biofouling 5:143–156

    Google Scholar 

  • Brewster JD and Mazenko RS (1998) Filtration capture and immunoelectrochemical detection for rapid assay of Escherichia coli O157:H7. J Immunol Methods 211:1–8

    Google Scholar 

  • Brinchmann JE, Gaudernack G, Thorsby E, Jonassen TO and Vartdal F (1989) Reliable isolation of human immunodeficiency virus from cultures of naturally infected CD4+ T cells. J. Virol. Methods 25:293–300

    Google Scholar 

  • Brinchmann JE, Albert J and Vartdal F (1991) Few infected CD4+ T cells but a high proportion of replication-competent provirus copies in asymptomatic human immunodeficiency virus type 1 infection. J. Virol. 65:2019–2023

    Google Scholar 

  • Brytting M, Wahlberg J, Lundberg J, Wahren B, Uhlen M, Sundqvist V-A (1992) Variations in the cytomegalovirus major immediate-early gene found by direct genome sequencing. J. Clin. Microbiol. 30:955–960

    Google Scholar 

  • Campbell P (1996) Permanent Magnet Materials and their applications. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Centers for Disease Control and Prevention (Date) Update: Outbreaks of Cyclospora cayetanaensis infection—U.S. and Canada 1996. Morbidity and Mortality Weekly Report 45: 611–612

    Google Scholar 

  • Chastellain M, Petri A and Hofmann H (2004) Particle size investigations of a multistep synthesis of PVA coated superparamagnetic nanoparticles. J. Colloid. Interface Sci. 278:353–360

    Google Scholar 

  • Chatterjee J, Haik Y and Chen CJ (2001a) Modification and characterization of polystyrene-based magnetic microsperes and comparison with albumin-based magnetic microspheres J Mag Mag Mat. 225:21–29

    Google Scholar 

  • Chatterjee J, Haik Y and Chen C-J (2001b) Synthesis and characterization of heat-stabilized albumin magnetic microspheres Colloid Poly Sci. 279:1073–1081

    Google Scholar 

  • Chatterjee J, Haik Y and Chen C-J (2003) Size dependent magnetic properties of iron oxide nanoparticles J Mag Mag Mat, 257:113–118

    Google Scholar 

  • Chemla YR, Grossman HL, Lee TS, Clarke J, Adamkiewicz M and Buchanan BB (1999) A new study of bacterial motion: superconducting quantum interference device microscopy of magnetotactic bacteria. Biophysical Journal 76:3323–3330

    Google Scholar 

  • Chen T, Lei JD and Tong AJ (2005) Immunosorbent assay microchip system for analysis of human immunoglobulin G on MagnaBind carboxyl derivatized beads. Luminescence 20(4–5):256–60

    Google Scholar 

  • Chou C, Tsai Y, Liu J, Wei JCC, Liao T, Chen M and Liu L (2001). The detection of the HLA-B27 antigen by immunomagnetic separation and enzyme-linked immunosorbent assay—comparison with a flow cytometric procedure. Journal of Immunological Methods 255:15–22

    Google Scholar 

  • Coffey KR, Hylton TL, Parker MA, Howard JK (1995) Thin Film Structures for Low Field Granular Giant Magnetoresistance. Scripta Metallurgica et Materialia 33:1593–1602

    Google Scholar 

  • Daughton JM, Bade PA, Jenson ML, Rahmati MMM (1992) Giant Magnetoresistance in Narrow Stripes. IEEE Transactions on Magnetics 28:2488–2493

    Google Scholar 

  • Dorman JL and Fiorani D (1992) Magnetic Properties of Fine Particles. Publisher, Amsterdam

    Google Scholar 

  • Dorman JL, Fiorani D and Tronc E (1997) Magnetic relaxation in fine-particle systems. In: Prigogine I and Rice SA (eds) Advances in Chemical Physics, Vol. XCVIII. John Wiley and Sons, New York, 283–494

    Google Scholar 

  • Drancourt M, George F, Brouqui P, Sampol J and Raoult D (1992). Diagnosis of Mediterranean spotted fever by indirect immunofluorescence of Rickettsia conorii in circulating endothelial cells isolated with monoclonal antibody-coated immunomagnetic beads. J. Infect. Dis. 166:660–663

    Google Scholar 

  • Fannin PC, Charles SW (1994) On the Calculation of the Néel Relaxation Time in Uniaxial Single-Domain Ferromagnetic Particles. J. Phys. D Appl. Phys. 27:185–188

    Google Scholar 

  • Feldsine PT, Forgey RL, Falbo-Nelson MT and Brunelle S (1997) Escherichia coli O157:H7 Visual Immunoprecipitation assay: a comparative validation study. J. AOAC 80:43–48

    Google Scholar 

  • Feng PJ (1992) Commercial assay systems for detecting foodborne Salmonella: a review. Food Prot. 55:927–934

    Google Scholar 

  • Flynn ER, Bryant HC, Bergemann C, Larson RS, Lovato D and Sergatskov DA (2007) Use of a SQUID array to detect T-cells with magnetic nanoparticles in determining transplant rejection. Journal of Magnetism and Magnetic Materials 311:429–435

    Google Scholar 

  • Frost JA, McEvoy MB, Bentley CA and Andersson Y (1995) An outbreak of Shigella sonnei infection associated with consumption of iceberg lettuce. Emerg. Infect. Dis. 1(1): 26–29

    Google Scholar 

  • Fu L, Dravid VP, Klug K, Liu X and Mirkin CA (2002) Synthesis and patterning of magnetic nanostructures. European Cells and Materials Journal 3:156–157

    Google Scholar 

  • Fukuda S, Tatsumi H, Igimi S, Yamamot, S (2005) Improved bioluminescent enzyme immunoassay for the rapid detection of Salmonella in chicken meat samples. Lett Appl Microbiol. 41(5):379–384

    Google Scholar 

  • Fung DYC (1995) What’s needed in rapid detection of foodborne pathogens. Food Technol. 49:64–67

    Google Scholar 

  • Gehring AG, Patterson DL and Tu SI (1998) Use of a light-addressable potentiometric sensor for the detection of Escherichia coli O157:H7. Anal. Biochem. 258:293–298

    Google Scholar 

  • Gehring AG, Irwin PL, Reed SA, Tua S, Andreotti PE and Akhavan-Tafti HRS (2004) Enzyme-linked immunomagnetic chemiluminescent detection of Escherichia coli O157:H7. Immunol Methods 293(1–2):97–106

    Google Scholar 

  • Goldman ER, Mattoussi H, Anderson GP, Medintz IL and Mauro JM (2005) Fluoroimmunoassays using antibody-conjugated quantum dots. Methods Mol Biol. 303:19–34

    Google Scholar 

  • Gref R, Domb A, Quellec P, Blunk T, Muller RH, Verbavatz JM and Langer R (1995) The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. Advanced Drug Delivery Reviews 16 (2):215–233

    Google Scholar 

  • Grimes CA, Mungle CS, Zeng K, Jain MK, Dreschel WR, Paulose M and Ong KG (2002) Wireless magnetoelastic resonance sensors: a critical review. Sensors 2:294–313

    Google Scholar 

  • Grossman HL, Myers WR, Vreeland VJ, Bruehl R, Alper MD, Bertozzi CR, Clarke J (2003) Detection of Bacteria in Suspension by Using a Superconducting Quantum Interface Device. PNAS 101:129–134

    Google Scholar 

  • Grünberg P, Schreiber R, Pang Y (1986) Layered Magnetic Structures: Evidence for Antiferromagnetic Coupling of Fe Layers across Cr Interlayers. Physical Review Letters 57:2442–2445

    Google Scholar 

  • Gundersen SG, Haagensen I, Jonassen TO, Figenschau KJ, de Jonge N and Deelder AM (1992) Magnetic bead antigen capture enzyme-linked immunoassay in microtitre trays for rapid detection of schistosomal circulating anodic antigen. J. Immunol. Methods 148:1–8

    Google Scholar 

  • Gupta AK and Wells S (2004) Surface-modified superparamagnetic nanoparticles for drug delivery: Preparation, characterization, and cytotoxicity studie. IEEE Trans. In Nanobioscience 3(1):66–73

    Google Scholar 

  • Haik Y, Chen C-J, Chatterjee J and Kanuri S (2000) The use of biotinylated lectin for separating red cells from whole blood. Biomolecular Eng. 16(5):179

    Google Scholar 

  • Haik Y, Cordovaz M, Chen C-J and Chatterjee J (2002) Magnetic Immunoassay for Rapid Assessment of Acute Myocardial Infarction. European Cells and Materials 3:41–44

    Google Scholar 

  • Haik Y, Chatterjee J and Chen C-J (2005) Synthesis and stabilization of Fe-Nd-B nanoparticles by chemical method. J Nanoparticles Res. 7(6):675–679

    Google Scholar 

  • Hedrum A, Lundeberg J, Pahlson C and Uhlen M (1992) Immunomagnetic recovery of Chlamydia trachomatis from urine with subsequent colorimetric DNA detection. PCR Methods & Applications 2:167–171

    Google Scholar 

  • Heleg-Shabtai V, Katz E and Willner I (1997) Assembly of microperoxidase-11 and Co(II)-protoporphyrin IX reconstituted myoglobin monolayers on Au-electrodes: integrated bioelectrocatalytic interfaces. J Am. Chem. Soc. 119:8121–8122

    Google Scholar 

  • Hibi K, Abe A, Ohashi E, Mitsubayashi K, Ushio H, Hayashi T, Ren H and Endo H (2006) Combination of immunomagnetic separation with flow cytometry for detection of Listeria monocytogenes. Analytica Chemica Acta 573:158–163

    Google Scholar 

  • Islam D, Tzipori S, Islam M and Lindberg A (1993) Rapid detection of Shigella dysenteriae and Shigella flexneri in faeces by an immunomagnetic assay with monoclonal antibodies. A. Eur. J. Clin. Microbiol. Infect. Dis. 12:25–32

    Google Scholar 

  • Jeníková ZG, Pazlarova J and Demnerova K (2000) Detection of Salmonella in food samples by the combination of immunomagnetic separation and PCR assay Int Microbiol. 3(4):225–229

    Google Scholar 

  • Jain MK, Schmidt S and Grimes CA (2001) Magneto-acoustic sensors for measurement of liquid temperature, viscosity, and density. Appl. Acoustic 62:1001–1011

    Google Scholar 

  • Ji X, Zheng J, Xu J, Rastogi VK, Cheng T-C, DeFrank JJ and Leblanc RM (2005) (CdSe)ZnS quantum dots and organophosphorus hydrolase bioconjugate as biosensors for detection of paraoxon J. Phys. Chem. B. 109 (9):3793–3799

    Google Scholar 

  • Johne B, Jarp J and Haaheim LR (1989) Staphylococcus aureus exopolysaccharide in vivo demonstrated by immunomagnetic separation and electron microscopy. J. Clin. Microbiol. 27:1631–1635

    Google Scholar 

  • Johnson JL, Brooke CL and Fritschel SJ (1998) Comparison of the BAX for screening/E. coli O157:H7 method with conventional methods for detection of extremely low levels of Escherichia coli O157:H7 in ground beef. Appl. Environ. Microbiol. 64: 4390–4395

    Google Scholar 

  • Kapperud, G, Varund T, Skjerve E, Hornes E and Michaelsen TE (1993) Detection of pathogenic Yersinia enterocolitica in food and water by immunomagnetic separation, nested polymerase chain reactions, and colorimetric detection of amplified DNA. Appl. Environ. Microbiol. 59:2938–2944

    Google Scholar 

  • Kapperud G, Rorvik LM, Hasseltvedt V, Hoiby EA, Iverson BG, Staveland K, Johnson G, Leitao J, Herikstad H, Andersson Y, Langeland G, Gondrosen B and Lassen J (1995) Outbreak of Shigella sonnei infection traced to imported iceberg lettuce. J. Clin. Microbiol. 33: 609–614

    Google Scholar 

  • Kim JW, Jin Cho LZ, Marquardat SH, Forhilch AA, Baidoo SK (1999) Use of chicken egg-yolk antibodies against K88{+} fimbrial antigen for quantitative analysis of enterotoxigenic Escherichia coli (ETEC) K88+ by a sandwich ELISA J. Sci. Food Agric. 79: 1513–1518

    Google Scholar 

  • Kittel C (1946) Physical theory of ferromagnetic domains. Phys. Rev. 70:965–971

    Google Scholar 

  • Lee GU, Metzger S, Natesan M, Yanavich C, Dufrěne YF (2000) Implementation of force differentiation in the immunoassay. Analytical Biochemistry 287(2):261–271

    Google Scholar 

  • Leonard P, Hearty S, Quinn J and O’Kennedy R (2004) A generic approach for the detection of whole Listeria monocytogenes cells in contaminated samples using surface plasmon resonance. Biosens Bioelectron. 19(10):1331–1335

    Google Scholar 

  • Loiselle KT and Grimes CA (2000) Viscosity measurements of viscous liquids using magnetoelastic thick-film sensors. Rev. Sci. Instrum. 71:1441–1446

    Google Scholar 

  • Lund A, Hellemann AL and Vartdal F (1988) Rapid isolation of K88{+} Escherichia coli by using immunomagnetic particles. J. Clin. Microbiol. 26:2572–2575

    Google Scholar 

  • Lund A, Wasteson Y and Olsvik O (1991) Immunomagnetic separation and DNA hybridization for detection of enterotoxigenic Escherichia coli in a piglet model. J. Clin Microbiol. 29:2259–2262

    Google Scholar 

  • Mary M (1997) Applications of magnetic particles in immunoassays. In: Hafeli U, Schutt W, Teller J, Zborowski M (eds) Scientific and Clinical Applications of Magnetic Carriers. Plenum Press, New York

    Google Scholar 

  • Matsunaga T, Kawasaki M, Tu X, Tsujimaura N and Nakamura N (1996) Chemiluminescence enzyme immunoassay using bacterial magnetic particles. Anal. Chem. 68: 3551–3554

    Google Scholar 

  • Meyer MHF, Krause HJ, Hartmann M, Miethe P, Oster J and Keusgen M (2007a) Francisella tularensis detection using magnetic labels and a magnetic biosensor based on frequency mixing. Journal of Magnetism and Magnetic Materials 311:259–263

    Google Scholar 

  • Meyer MHF, Stehr M, Bhuju S, Krause HJ, Hartmann M, Miethe P, Singh M and Keusgen M (2007b) Magnetic biosensor for the detection of yersinia pestis. Journal of Microbiological Methods 68:218–224

    Google Scholar 

  • Millen RL, Kawaguchi T, Granger MC, Porter MD (2005) Giant Magnetoresistive Sensors and Superparamagnetic Nanoparticles: A Chip-Scale Detection Strategy for Immunosorbent Assays. Anal. Chem. 77:6581–6587

    Google Scholar 

  • Mohamadi-Nejad A, Moosavi-Movahedi AA, Safarian S, Naderi-Manesh MH, Ranjbar B, Farzami B, Mostafavi H, Larijani MB and Hakimelah GH (2002) The Thermal Analysis of Nonezymatic Glycosylation of human serum albumin: differential scanning calorimetry and circular dichroism studies. Thermochimica acta 389:141–151

    Google Scholar 

  • Morgan JAW, Winstanley C, Pickup RW and Saunders JR (1991) Rapid Immunocapture of Pseudomonas putida Cells from Lake Water by Using Bacterial Flagella. Appl. Environ. Microbiol. 57:503–509

    Google Scholar 

  • Morup S (1993) Studies of Superparamagnetism in Samples of Ultrafine Particles. In: Hernando A (ed) Nanomagnetism. Kluwer Academic Publishers, Boston, pp 93–99

    Google Scholar 

  • Mulvaney SP, Mattoussi HM and Whitman LJ (2004) Incorporating fluorescent dyes and quantum dots into magnetic microbeads for immunoassays. Biotechniques 36(4):602–6, 608–609

    Google Scholar 

  • Mungle CS (2001) Optical detection of magnetoelastic sensors and the variable temperature response of the resonant frequency. Dissertation, University of Kentucky

    Google Scholar 

  • Nagasaki Y, Ishii T, Sunaga Y, Watanabe Y, Otsuka H and Kataoka K (2004) Novel Molecular Recognition via Fluorescent Resonance Energy Transfer Using a Biotin-PEG/Polyamine Stabilized CdS Quantum Dot. Langmuir 20(15):6396–6400

    Google Scholar 

  • Nagasaki Y, Kobayashi H, Katsuyama Y, Jomura T and Sakura T (2007) Enhanced immunoresponse of antiboy/mixed-PEG co-immobilized surface construction of high performance immunomagnetic ELISA system. Journal of Colloid and Interface Science 309:524–530

    Google Scholar 

  • Olsvik O, Skjerve E, Hornes E et al. (1991) Magnetic separation techniques applied to cellular and molecular biology. In: Kemshead JT (ed) Clinical microbiology. Wordsmiths’ Conference Publications, Somerset, England, pp 207–221

    Google Scholar 

  • Olsvik O, Popovic T, Skjerve E, Cudjoe S, Hornes E, Ugelstad J and Uhlen M (1994) Magnetic separation techniques in diagnostic microbiology. Clinical Microbiol Rev. 7(1): 43–54

    Google Scholar 

  • Padhye NV and Doyle MP (1991) Production and characterization of a monoclonal antibody specific for enterohemorrhagic Escherichia coli of serotypes O157:H7 and O26:H11. J. Clin. Microbiol. 29:99–103

    Google Scholar 

  • Perez FG, Mascini M, Tothill EI and Turner AP (1998) Immunomagnetic separation with mediated flow injection analysis amperometric detection of viable Escherichia coli O157. Anal. Chem. 70:2380–2386

    Google Scholar 

  • Pinaud F, Michalet X, Bentolila LA, Tsay JM, Doose S, Li JJ, Iyer G and Weiss S (2006) Advances in fluorescence imaging with quantum dot bio-probes. Biomaterials 27(9):1679–1678

    Google Scholar 

  • Rife JC, Miller MM, Sheehan PE, Tamanaha CR, Tondra M, Whitman LJ (2003) Design and Performance of GMR Sensors for the Detection of Magnetic Microbeads in Biosensors. Sensors and Actuators A 107:209–218

    Google Scholar 

  • Ruan G, Feng S and Li Q (2002) Effects of material hydrophobicity on physical properties of polymeric microspheres formed by double emulsion process. J of Controlled Release 84:151–160

    Google Scholar 

  • Ruan C, Wang H and Li Y (2002a) A bienzyme electrochemical biosensor coupled with immunomagnetic separation for rapid detection of escherichia coli O157:H7 in food samples. Trans. ASAE 45:249–255

    Google Scholar 

  • Ruan C, Yang L and Li Y (2002b) Immunobiosensor chips for detection of Escherichia coli O157:H7 using electrochemical impedance spectroscopy. Anal. Chem. 74:4814–4820

    Google Scholar 

  • Ruan G and Feng S (2003) Preparation and characterization of poly(lactic acid)–poly(ethylene glycol)–poly(lactic acid) (PLA-PEG-PLA) microspheres for controlled release of paclitaxel. Biomaterials 24:5037–5044

    Google Scholar 

  • Ruan C, Zeng K, Varghese OK and Grimes CA (2003) Magnetoelastic immunosensors: amplified mass immunosorbent assay for detection of escherichia coli O157:H7. Anal. Chem. 75:6494–6498

    Google Scholar 

  • Safarik I and Safarikova M (2004) Magnetic techniques for the isolation and purification of proteins and peptides. BioMagn. Res. Technol. 2 (7):1–17

    Google Scholar 

  • Santra S, Yang H, Holloway PH, Stanley JT and Mericle RA (2005) Synthesis of water-dispersible fluorescent, radio-opaque, and paramagnetic CdS:Mn/ZnS quantum dots: a multifunctional probe for bioimaging. J Am Chem Soc. 127(6):1656–1657

    Google Scholar 

  • Seo KH, Brackett RE, Frank JF and Hilliard S (1998) Immunomagnetic separation and flow cytometry for rapid detection of E. coli O157:H7. J. Food Prot. 61:812–816

    Google Scholar 

  • Sharma VK (2002) Detection and quantitation of enterohemorrhagic Escherichia coli O157, O111, and O26 in beef and bovine feces by real-time polymerase chain reaction. Food Prot. 65:1371–1380

    Google Scholar 

  • Skjerve E, Rorvik ML and Olsvik O (1990) Detection of Listeria monocytogenes in foods by immunomagnetic separation. Appl. Environ Microbiol. 56:3478–3481

    Google Scholar 

  • Skjerve E and Olsvilk O (1991) Immunomagnetic separation of Salmonella from foods. Int. J. Food Microbiol. 14:11–18

    Google Scholar 

  • Solaro R (2002) Nanostructured Polymeric Systems in Targeted Release of Proteic Drugs and in Tissue Engineering. Proceedings of China-EU Forum on Nanosized Technology, pp 225–244

    Google Scholar 

  • Stoyanov PG and Grimes CA (2000) A remote query magnetostrictive viscosity sensor. Sens. Actuators 80:8–14

    Google Scholar 

  • Tu S-I, Uknalis J, Irwin P and Yu LSL (2000) The use of streptavidin coated magnetic beads for detecting pathogenic bacteria by light addressable potentiometric sensor (LAPS). J. Rapid Methods Autom. Microbiol. 8:95–109

    Google Scholar 

  • Vanderhoff JW, El-Aasser MS and Ugelstad J (1979) US Patent: 4,177,177

    Google Scholar 

  • Varshney M, Yang L, Su XL and Li Y (2005) Magnetic nanoparticle-antibody conjugates for the separation of Escherichia coli 0157:H7 in ground beef. J Food Prot. 68(9):1804–1811

    Google Scholar 

  • Vermunt AE, Franken AA and Beumer RR (1992) Isolation of salmonellas by immunomagnetic separation. J. Appl. Bacteriol. 72:112–118

    Google Scholar 

  • Vila A, Gill H, McCallion O and Alonso M (2004) Transport of PLA-PEG particles across the nasal mucosa: effect of particle size. J. of Controlled Release 98:231–244

    Google Scholar 

  • Volkov I, Gudoshnikov S, Usov N, Volkov A, Moskvina M, Maresov A, Snigirev O, Tanaka S (2006) SQUID-measurements of Relaxation Time of Fe3O4 Superparamagnetic Nanoparticles Ensembles. Journal of Magnetism and Magnetic Materials 300: e294-e297

    Google Scholar 

  • Vote D, Doar O, Moon RE and Toffaletti JG (2001) Blood glucose meter performance under hyperbaric oxygen conditions. Clinica Chimica Acta 305:81–87

    Google Scholar 

  • Wang CW and Moffitt MG (2005) Use of Block Copolymer-Stabilized Cadmium Sulfide Quantum Dots as Novel Tracers for Laser Scanning Confocal Fluorescence Imaging of Blend Morphology in Polystyrene/Poly(methyl methacrylate) Films. Langmuir 21(6):2465–2473

    Google Scholar 

  • Wright DJ, Chapman PA and Siddons CA (1994) Immunomagnetic separation as a sensitive method for isolating Escherichia coli O157from food samples. Epidemiol. Infec. 113: 31–39

    Article  Google Scholar 

  • Yang L, Li Y (2005) Quantum dots as fluorescent labels for quantitative detection of Salmonella typhimurium in chicken carcass wash water. J Food Prot. 68(6):1241–1245

    Google Scholar 

  • Yang L and Li Y (2006) Detection of viable Salmonella using microelectrode-based capacitance measurement coupled with immunomagnetic separation. J Microbiol Methods 64: 9–16

    Google Scholar 

  • Yu H and Bruno JG (1996) Immunomagnetic-electrochemiluminescent detection of Escherichia coli O157 and Salmonella typhimurium in foods and environmental water samples. Appl. Environ. Microbiol. 62:587–592

    Google Scholar 

  • Zborowski M and Chalmers JJ (2005) Magnetic cell sorting. Methods Mol Biol. 295:291–300

    Google Scholar 

  • Zeng K, Ong KG, Mungle CS and Grimes CA (2002) Time domain characterization of oscillating sensors: application of frequency counting for resonant frequency determination. Rev. Sci. Instrum. 73:4375–4380

    Google Scholar 

  • Zhao X and Shippy SA (2004) Competitive Immunoassay for Microliter Protein Samples with Magnetic Beads and Near-Infrared Fluorescence Detection. Anal Chem. 76(7):1871–1876

    Google Scholar 

  • Zhao L, Wu D, Wu L and Song T (2007) A simple and accurate method for quantification of magnetosomes in magnetotactic bacteria by common spectrophotometer. Journal of Biochem. Biophys. Methods 70:377–383

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Haik, Y., Sawafta, R., Ciubotaru, I., Qablan, A., Tan, E.L., Ong, K.G. (2008). Magnetic Techniques for Rapid Detection of Pathogens. In: Zourob, M., Elwary, S., Turner, A. (eds) Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems. Springer, New York, NY. https://doi.org/10.1007/978-0-387-75113-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-75113-9_17

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-75112-2

  • Online ISBN: 978-0-387-75113-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics