Skip to main content

Impedance-Based Biosensors for Pathogen Detection

  • Chapter

Abstract

Electrochemical impedance spectroscopy (EIS) is an important detection technique for biosensors. In the field of immunosensors, and particularly pathogen detection, it is one of the preferred electrochemical techniques because it does away with the use of enzyme labels or redox mediators. This chapter provides an introduction to the fundamentals of EIS and basic data analysis, with an emphasis on the most common features found in immunosensors and possible experimental limitations.

This chapter then discusses a series of functionalisation approaches that can be used in the development of an immunosensor for the detection of bacteria. This is followed by a selection of impedance-based immunosensor examples from the literature.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alfonta L, Bardea A, Khersonsky O, Katz E and Willner I (2001) Chronopotentiometry and faradaic impedance spectroscopy as signal transduction methods for the biocatalytic precipitation of an insoluble product on electrode supports: Routes for enzyme sensors, immunosensors and DNA sensors. Biosensors & Bioelectronics 16:675–687

    Article  Google Scholar 

  • Alfonta L, Singh AK and Willner I (2001) Liposomes labeled with biotin and horseradish peroxidase: A probe for the enhanced amplification of antigen-antibody or oligonucleotide-DNA sensing processes by the precipitation of an insoluble product on electrodes. Analytical Chemistry 73:91–102

    Article  Google Scholar 

  • Alfonta L, Willner I, Throckmorton DJ and Singh AK (2001) Electrochemical and quartz crystal microbalance detection of the cholera toxin employing horseradish peroxidase and gm1-functionalized liposomes. Anal. Chem. 73:5287–5295

    Article  Google Scholar 

  • Alon R, Bayer EA and Wilchek M (1993) Cell-adhesion to streptavidin via rgd-dependent integrins. European Journal of Cell Biology 60:1–11

    Google Scholar 

  • Anderson GP, Jacoby MA, Ligle FS, and King KD (1997) Effectiveness of protein a for antibody immobilization for a fiber optic biosensor. Biosensors and Bioelectronics 12: 329–336

    Article  Google Scholar 

  • Awais R, Fukudomi H, Miyanaga K, Unno H and Tanji Y (2006) A recombinant bacteriophage-based assay for the discriminative detection of culturable and viable but nonculturable escherichia coli o157 : H7. Biotechnology Progress 22:853–859

    Article  Google Scholar 

  • Babacan S, Pivarnik P, Letcher S and Rand AG (2000) Evaluation of antibody immobilization methods for piezoelectric biosensor application. Biosensors & Bioelectronics 15:615–621

    Article  Google Scholar 

  • Bagotsky VS (2006) Fundamentals of Electrochemistry. John Wiley & Sons, Hoboken

    Google Scholar 

  • Bain CD and Whitesides GM (1988) Formation of 2-component surfaces by the spontaneous assembly of monolayers on gold from solutions containing mixtures of organic thiols. Journal of the American Chemical Society 110:6560–6561

    Article  Google Scholar 

  • Bain CD and Whitesides GM (1989) A study by contact-angle of the acid-base behavior of monolayers containing omega-mercaptocarboxylic acids adsorbed on gold - an example of reactive spreading. Langmuir 5:1370–1378

    Article  Google Scholar 

  • Barak O, Treat JR and James WD (2005) Antimicrobial peptides: Effectors of innate immunity in the skin. Adv Dermatol. 21:357–374

    Article  Google Scholar 

  • Bard AJ and Faulkner LR (2001) Electrochemical Methods: Fundamentals and Applications. John Wiley & Sons, New York

    Google Scholar 

  • Bardea A, Dagan A and Willner I (1999) Amplified electronic transduction of oligonucleotide interactions: Novel routes for tay-sachs biosensors. Analytica Chimica Acta. 385:33–43

    Article  Google Scholar 

  • Bardea A, PatolskyF, Dagan A and Willner I (1999) Sensing and amplification of oligonucleoatide-DNA interactions by means of impedance spectrocospy: A route to a tay-sachs sensor. Chem. Commun. 21–22

    Google Scholar 

  • Barsoukov E and Macdonald JR (eds) (2005) Impedance Spectroscopy: Theory, Experiment and Applications. John Wiley & Sons, Hoboken

    Google Scholar 

  • Bartlett PN, Birkin PR, Wang JH, Palmisano F and De BenedettoG (1998) An enzyme switch employing direct electrochemical communication between horseradish peroxidase and a poly(aniline) film. Analytical Chemistry 70:3685–3694

    Google Scholar 

  • Bayer EA, Benhur H and Wilchek M (1990) Isolation and properties of streptavidin. Methods in Enzymology 184:80–89

    Article  Google Scholar 

  • Berggren C and Johansson G (1997). Capacitance measurements of antibody-antigen interactions in a flow system. Anal. Chem. 69:3651–3657

    Article  Google Scholar 

  • Berggren C, Bjarnason B and Johansson G (2001) Capacitive biosensors. Electroanalysis 13:173–180

    Article  Google Scholar 

  • Bhatia SK, Shriverlake LC, Prior KJ, Georger JH, Calvert JM, Bredehorst R and Ligler FS (1989) Use of thiol-terminal silanes and heterobifunctional crosslinkers for immobilization of antibodies on silica surfaces. Analytical Biochemistry 178:408–413

    Article  Google Scholar 

  • Billard V, Martelet C, Binder P and Therasse J (1991) Toxin detection using capacitance measurements on immunospecies grafted onto a semiconductor substrate. Analytica Chimica Acta. 249:367–372

    Article  Google Scholar 

  • Brett CMA and Oliveira Brett AM (1993) Electrochemistry: Principles, Fundamentals and Applications. Oxford University Press, Oxford

    Google Scholar 

  • Brewer NJ, Janusz S, Critchley K, Evans SD and Leggett GJ (2005). Photooxidation of self-assembled monolayers by exposure to light of wavelength 254 nm: A static sims study. Journal of Physical Chemistry B. 109:11247–11256

    Article  Google Scholar 

  • Butler JE (2000) Solid supports in enzyme-linked immunosorbent assay and other solid-phase immunoassays. Methods 22:4–23

    Article  Google Scholar 

  • Cady P. (1975) Rapid automated bacterial identification by impedance measurement. In: C.G. Heden, Editor, New Approaches to the Identification of Mocroorganisms, Wiley, New York, NY (1975), pp. 73–99.

    Google Scholar 

  • Calvo EJ, Danilowicz C, Lagier CM, Manrique J and Otero M (2004) Characterization of self-assembled redox polymer and antibody molecules on thiolated gold electrodes. Biosensors & Bioelectronics 19:1219–1228

    Article  Google Scholar 

  • Chaki NK and Vijayamohanan K (2002) Self-assembled monolayers as a tunable platform for biosensor applications. Biosensors & Bioelectronics 17:1–12

    Article  Google Scholar 

  • Characklis WG and Marshall KC (ed) (1990) Biofilms. John Wiley, New York

    Google Scholar 

  • Chen TH, Small DA, McDermott MK, Bentley WE and Payne GF (2003) Enzymatic methods for in situ cell entrapment and cell release. Biomacromolecules 4:1558–1563

    Article  Google Scholar 

  • Chin SF and Pantano P (2006) Antibody-modified microwell arrays and photobiotin patterning on hydrocarbon-free glass. Microchemical Journal 84:1–9

    Article  Google Scholar 

  • Christensen PA and Hamnet A (1994) Techniques and Mechanisms in Electrochemistry. Blackie Academic and Professional, London-Glasgow-New York

    Google Scholar 

  • Cosnier S (1999) Biomolecule immobilisation on electrode surfaces by entrapment or attachment to electrochemically polymerized films. Biosensors and Bioelectronics 14:443–456

    Article  Google Scholar 

  • Cosnier S (2003) Biosensors based on electropolymerized films: New trends. Analytical and Bioanalytical Chemistry 377:507–520

    Article  Google Scholar 

  • Costerton JW, Stewart PS and Greenberg EP (1999) Bacterial biofilms: A common cause of persistent infections. Science. 284: 1318–1322.

    Article  Google Scholar 

  • de la Rica R, Fernandez-Sanchez C and Baldi A (2006) Polysilicon interdigitated electrodes as impedimetric sensors. Electrochemistry Communications 8:1239–1244

    Article  Google Scholar 

  • Ding SJ, Chang BW, Wu CC, Lai MF and Chang HC (2005) Electrochemical evaluation of avidin-biotin interaction on self-assembled gold electrodes. Electrochimica Acta. 50:3660–3666

    Article  Google Scholar 

  • Edgar R, McKinstry M, Hwang J, Oppenheim AB, Fekete RA, Giulian G, Merril C, Nagashima K and Adhya S (2006) High-sensitivity bacterial detection using biotin-tagged phage and quantum-dot nanocomplexes. Proceedings of the National Academy of Sciences of the United States of America 103:4841–4845

    Article  Google Scholar 

  • Ellington AD and Szostak JW (1990) In vitro selection of rna molecules that bind specific ligands. Nature 346:818–822

    Article  Google Scholar 

  • Elsholz B, Worl R, Blohm L, Albers J, Feucht H, Grunwald T, Jurgen B, Schweder T and Hintsche R (2006) Automated detection and quantitation of bacterial rna by using electrical microarrays. Analytical Chemistry 78:4794–4802

    Article  Google Scholar 

  • Everett WR and Fritschfaules I (1995) Factors that influence the stability of self-assembled organothiols on gold under electrochemical conditions. Analytica Chimica Acta. 307:253–268

    Article  Google Scholar 

  • Farabullini F, Lucarelli F, Palchetti I, Marrazza G and Mascini M (2006) Disposable electrochemical genosensor for the simultaneous analysis of different bacterial food contaminants. Biosensors and Bioelectronics 22:1544–1549

    Article  Google Scholar 

  • Farace G, Lillie G, Hianik T, Payne P and Vadgama P (2002) Reagentless biosensing using electrochemical impedance spectroscopy. Bioelectrochemistry 55:1–3

    Article  Google Scholar 

  • Ferris CD (1975) Introduction to bioelectrodes. Plenum Press, New York

    Google Scholar 

  • Franceschetti DR and Macdonald JR (1979) Diffusion of neutral and charged species under small-signal ac conditions. Journal of Electroanalytical Chemistry 101:307–316

    Google Scholar 

  • Fricke H (1932) The theory of electrolytic polarization. Philosophical Magazine 7:310–318

    Google Scholar 

  • Gabrielli C (1995) Need name of article here. In: Rubinstein I (ed) Physical Electrochemistry Marcel Dekker, Inc., New York

    Google Scholar 

  • Gabrielli C (1998) Identification of electrochemical processes by frequency response analysis. Solartron Analytical, Technical Note 004/83

    Google Scholar 

  • Gibson DM (ed) (2001) Conductance/impedance techniques for microbial assay. CRP Press Inc., Boca Raton, Florida

    Google Scholar 

  • Goding JW (1978) Use of staphylococcal protein-a as an immunological reagent. Journal of Immunological Methods 20:241–253

    Article  Google Scholar 

  • Goldman ER, Pazirandeh MP, Mauro JM, King KD, Frey JC and Anderson GP (2000) Phage-displayed peptides as biosensor reagents. Journal of Molecular Recognition 13:382–387

    Article  Google Scholar 

  • Gomez-Sjoberg R, Morisette DT and Bashir R (2005) Impedance microbiology-on-a-chip: Microfluidic bioprocessor for rapid detection of bacterial metabolism. Journal of Microelectromechanical Systems 14:829–838

    Article  Google Scholar 

  • Guiseppi-Elie A, Sheppard Jr. NF, Brahim S and Narinesingh D (2001) Enzyme microgels in packed-bed bioreactors with downstream amperometric detection using microfabricated interdigitated microsensor electrode arrays. Biotechnology and Bioengineering 75:475–484

    Article  Google Scholar 

  • Gyepi-Garbrah SH and Silerova R (2001) Probing temperature-dependent behaviour in self-assembled monolayers by ac-impedance spectroscopy. Physical Chemistry Chemical Physics 3:2117–2123

    Article  Google Scholar 

  • Hanbury CM, Miller WG and Harris RB (1997) Enzyme microgels in packed-bed bioreactors with downstream amperometric detection using microfabricated interdigitated microsensor electrode arrays. Clinical Chemistry 43:2128–2136

    Google Scholar 

  • Hautman J and Klein ML (1990) Molecular-dynamics simulation of the effects of temperature on a dense monolayer of long-chain molecules. Journal of Chemical Physics 93:7483–7492

    Article  Google Scholar 

  • Heitz F and Van Mau N (2002) Protein structural changes induced by their uptake at interfaces. Biochimica et Biophysica Acta 1597:1–11

    Google Scholar 

  • Hermanson GT (1996) Bioconjugate Techniques. Academic Press, London

    Google Scholar 

  • Ho JAA, Zeng SC, Huang MR and Kuo HY (2006) Development of liposomal immunosensor for the measurement of insulin with femtomole detection. Analytica Chimica Acta. 556:127–132

    Article  Google Scholar 

  • Holliger P and Hudson PJ (2005) Engineered antibody fragments and the rise of single domains. Nature Biotechnology 23:1126–1136

    Article  Google Scholar 

  • Hoogenboom HR (2005) Selecting and screening recombinant antibody libraries. Nature Biotechnology 23:1105–1116

    Article  Google Scholar 

  • Huang JY and Hemminger JC (1993) Photooxidation of thiols in self-assembled monolayers on gold. Journal of the American Chemical Society 115:3342–3343

    Article  Google Scholar 

  • Huang TT, Sturgis J, Gomez R, Geng T, Bashir R, Bhunia AK, Robinson JP and Ladisch MR (2003) Composite surface for blocking bacterial adsorption on protein biochips. Biotechnology and Bioengineering 81:618–624

    Article  Google Scholar 

  • Ivnitski D, Abdel-Hamid I, Atanasov P, Wilkins E and Stricker S (2000) Application of electrochemical biosensors for detection of food pathogenic bacteria. Electroanalysis 12:317–325

    Article  Google Scholar 

  • K’Owino IO and Sadik OA (2005) Impedance spectroscopy: A powerful tool for rapid biomolecular screening and cell culture monitoring. Electroanalysis 17:2101–2113

    Article  Google Scholar 

  • Karyakin A, Presnova G, Rubtsova M and Egorov A (2000) Oriented immobilization of antibodies onto the gold surfaces via their native thiol groups. Anal Chem. 72:3805–3811

    Article  Google Scholar 

  • Katz E and Willner I (2003) Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: Routes to impedimetric immunosensors, DNA-sensors, and enzyme biosensors. Electroanalysis 15:913–947

    Article  Google Scholar 

  • Kenny G and Dunsmoor C (1987) Effectiveness of detergents in blocking nonspecific binding of igg in the enzyme-linked immunosorbent assay (elisa) depends upon the type of polystyrene used. Israel Journal of Medical Sciences 23:732–734

    Google Scholar 

  • Kim GH, Rand AG and Letcher SV (2003) Impedance characterization of a piezoelectric immunosensor part ii: Salmonella typhimurium detection using magnetic enhancement. Biosensors & Bioelectronics 18:91–99

    Article  Google Scholar 

  • Kim HJ, Bennetto HP, Halablab MA, Choi CH and Yoon S (2006) Performance of an electrochemical sensor with different types of liposomal mediators for the detection of hemolytic bacteria. Sensors and Actuators B-Chemical 119:143–149

    Article  Google Scholar 

  • Klussmann S, Nolte A, Bald R, Erdmann VA and Fürste JP (1996) Mirror-image rna that binds d-adenosine. Nature Biotecnology 14:1112–1115

    Article  Google Scholar 

  • Ko HY, Lee HW and Moon J (2004) Fabrication of colloidal self-assembled monolayer (sam) using monodisperse silica and its use as a lithographic mask. Thin Solid Films 447:638–644

    Article  Google Scholar 

  • Koh W-G, Revzin A and Pishko MV (2002) Poly(ethylene glycol) hydrogel microstructures encapsulating living cells. Langmuir 18:2459–2462

    Article  Google Scholar 

  • Kohler G and Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity (reprinted from Nature, vol 256, 1975). Nature 256:495–497

    Article  Google Scholar 

  • Kumar A, Larsson O, Parodi D, Liang Z (2000) Silanized nucleic acids: A general platform for DNA immobilization. Nucleic Acids Res. 28(14):e71

    Google Scholar 

  • Kusser W (2000) Chemically modified nucleic acid aptamers for in vitro selections: Evolving evolution. Journal of Biotechnology 74:27–38

    Google Scholar 

  • Lappin-Scott HM and Costerton JW (eds) (1995) Microbial biofilms. Cambridge University Press, Cambridge

    Google Scholar 

  • Lasic DD (1998) Novel applications of liposomes. Trends in Biotechnology 16:307–321

    Article  Google Scholar 

  • Laureyn W, Nelis D, Van Gerwen P, Baert K, Hermans L, Magnee R, Pireaux JJ and Maes G (2000) Nanoscaled interdigitated titanium electrodes for impedimetric biosensing. Sensors and Actuators B-Chemical. 68:360–370

    Article  Google Scholar 

  • Lee HY, Jung HS, Fujikawa K, Park JW, Kim JM, Yukimasa T, Sugihara H and Kawai T (2005) New antibody immobilization method via functional liposome layer for specific protein assays. Biosensors & Bioelectronics 21:833–838

    Article  Google Scholar 

  • Lee TC, Yusoff K, Nathan S and Tana WS (2006) Detection of virulent newcastle disease virus using a phage-capturing dot blot assay. Journal of Virological Methods 136:224–229

    Article  Google Scholar 

  • Liu GY, Yang GH and Amro NA (2004) Molecular level approach to inhibit degradations of passivation layers on metal surfaces. Abstracts of Papers of the American Chemical Society 227:U1538-U1538

    Google Scholar 

  • Liu RH, Yang JN, Lenigk R, Bonanno J and Grodzinski P (2004) Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection. Analytical Chemistry 76:1824–1831

    Article  Google Scholar 

  • Love JC, Estroff LA, Kriebel JK, Nuzzo RG and Whitesides GM (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chemical Reviews. 105:1103–1169

    Article  Google Scholar 

  • Lu HC, Chen HM, Lin YS and Lin JW (2000) A reusable and specific protein a-coated piezoelectric biosensor for flow injection immunoassay. Biotechnology Progress 16:116–124

    Article  Google Scholar 

  • Lucarelli F, Marrazza G and Mascini M (2005) Enzyme-based impedimetric detection of pcr products using oligonucleotide-modified screen-printed gold electrodes. Biosensors & Bioelectronics 20:2001–2009

    Article  Google Scholar 

  • Macdonald JR (1984) Note on the parameterization of the constant-phase admittance element. Solid State Ionics 13:147–149

    Article  MathSciNet  Google Scholar 

  • Mamishev AV, Sundara-Rajan K, Yang F, Du YQ and Zahn M (2004) Interdigital sensors and transducers. Proceedings of the IEEE 92:808–845

    Article  Google Scholar 

  • Mao XL, Yang LJ, Su XL and Li YB (2006) A nanoparticle amplification based quartz crystal microbalance DNA sensor for detection of escherichia coli o157 : H7. Biosensors & Bioelectronics 21:1178–1185

    Article  Google Scholar 

  • Martin CR and Parthasarathy RV (1995) Polymeric microcapsule arrays. Advanced Materials 7:487–488

    Article  Google Scholar 

  • McAdams ET (1989) Effect of surface topography on the electrode-electrolyte interface impedance. Surface Topography 2:107–122

    Google Scholar 

  • McCoy MH and Wang E (2005) Use of electric cell-substrate impedance sensing as a tool for quantifying cytopathic effect in influenza a virus infected mdck cells in real-time. Journal of Virological Methods 130:157–161

    Article  Google Scholar 

  • Melo LF, Bott TR, Fletcher M and Capdeville B (ed) (1992) Biofilms: Science and technology. Kluwer Academic Publishers, The Netherlands

    Google Scholar 

  • Memoli A, Annesini MC, Mascini M, Papale S and Petralito S (2002) A comparison between different immobilised glucoseoxidase-based electrodes. Journal of Pharmaceutical and Biomedical Analysis 29:1045–1052

    Article  Google Scholar 

  • Minett AI, Barisci JN and Wallace GG (2002) Coupling conducting polymers and mediated electrochemical responses for the detection of listeria. Analytica Chimica Acta. 475:37–45

    Article  Google Scholar 

  • Mubammad-Tahir Z and Alocilja EC (2003) A conductometric biosensor for biosecurity. Biosensors & Bioelectronics 18:813–819

    Article  Google Scholar 

  • Nanda S, Muralidhar K and Kar SK (2002) Thermostable alpha-amylase conjugated antibodies as probes for immunodetection in elisa. Journal of Immunoassay & Immunochemistry 23:327–345

    Article  Google Scholar 

  • Nichkova M, Dosev D, Gee SJ, Hammock BD and Kennedy IM (2005) Microarray immunoassay for phenoxybenzoic acid using polymer encapsulated eu: Gd2o3 nanoparticles as fluorescent labels. Analytical Chemistry 77:6864–6873

    Article  Google Scholar 

  • Nolte A, Klussmann S, Bald R, Erdmann VA and Fürste JP (1996) Mirror-design of l-oligonucleotide ligands binding to l-arginine. Nature Biotechnology 14:1116–1119

    Article  Google Scholar 

  • Nuzzo RG and Allara DL (1983) Adsorption of bifunctional organic disulfides on gold surfaces. Journal of the American Chemical Society 105:4481–4483

    Article  Google Scholar 

  • Olsen EV, Sorokulova IB, Petrenko VA, Chen IH, Barbaree JM and Vodyanoy VJ (2006) Affinity-selected filamentous bacteriophage as a probe for acoustic wave biodetectors of salmonella typhimurium. Biosensors & Bioelectronics 21:1434–1442

    Article  Google Scholar 

  • Olthuis W, Streekstra W and Bergveld P (1995) Theoretical and experimental-determination of cell constants of planar-interdigitated electrolyte conductivity sensors. Sensors and Actuators B-Chemical 24:252–256

    Article  Google Scholar 

  • Ouerghi O, Touhami A, Jaffrezic-Renault N, Martelet C, Ouada H and Cosnier S (2002) Impedimetric immunosensor using avidin-biotin for antibody immobilization. Bioelectrochemistry 56:131–133

    Article  Google Scholar 

  • Palecek E, Jelen F and Trnkova L (1986) Cyclic voltammetry of DNA at a mercury electrode: An anodic peak specific for guanine. General Physiology and Biophysics 5:315–329

    Google Scholar 

  • Palecek E (1988) Adsorptive transfer stripping voltammetry: Determination of nanogram quantities of DNA immobilized at the electrode surface. Anal Biochem. 170:421–431

    Article  Google Scholar 

  • Palecek E and Fojta M (1994) Differential pulse voltammetric determination of rna at the picomole level in the presence of DNA and nucleic acid components. Analytical Chemistry 66:1566–1571

    Article  Google Scholar 

  • Pantano P and Chin SF (2003) Direct photobiotin modification of glass surfaces for antibody patterning applications. Abstracts of Papers of the American Chemical Society 225:U125-U125

    Google Scholar 

  • Parida SK, Dash S, Patel S and Mishra BK (2006) Adsorption of organic molecules on silica surface. Advances in Colloid and Interface Science 121:77–110

    Article  Google Scholar 

  • Park I-S and Kim N (1998) Thiolated salmonella antibody immobilization onto the gold surface of piezoelectric quartz crystal. Biosensors and Bioelectronics 13:1091–1097

    Article  Google Scholar 

  • Park S-J, Taton TA and Mirkin CA (2002) Array-based electrical detection of DNA with nanoparticle probes. Science 295:1503–1506

    Article  Google Scholar 

  • Patel AC, Li SX, Yuan JM and Wei Y (2006) In situ encapsulation of horseradish peroxidase in electrospun porous silica fibers for potential biosensor applications. Nano Letters 6:1042–1046

    Article  Google Scholar 

  • Patolsky F, Katz E, Bardea A and Willner I (1999) Enzyme-linked amplified electrochemical sensing of oligonucleotide-DNA interactions by means of the precipitation of an insoluble product and using impedance spectroscopy. Langmuir 15:3703–3706

    Article  Google Scholar 

  • Patolsky F, Lichtenstein A and Willner I (2001) Electronic transduction of DNA sensing processes on surfaces: Amplification of DNA detection and analysis of single-base mismatches by tagged liposomes. Journal of the Americal Chemical Society 123:5194–5205

    Article  Google Scholar 

  • Patolsky F, Lichtenstein A, Kotler M and Willner I (2001) Electronic transduction of polymerase or reverse transcriptase induced replication processes on surfaces: Highly sensitive and specific detection of viral genomes. Angew Chem Int Ed Engl. 40:2261–2265

    Article  Google Scholar 

  • Pavlinkova G Lou DY and Kohler H (2000) Site-specific photobiotinylation of antibodies, light chains, and immunoglobulin fragments. Methods 22:44–48

    Article  Google Scholar 

  • Pei R, Cheng Z, Wang E, Yang X (2001) Amplification of antigen-antibody interactions based on biotin labeled protein-streptavidin network complex using impedance spectroscopy. Biosensors & Bioelectronics. 16:355–361

    Article  Google Scholar 

  • Pejcic B and De Marco R (2006) Impedance spectroscopy: Over 35 years of electrochemical sensor optimization. Electrochimica Acta. 51:6217–6229

    Article  Google Scholar 

  • Piehler J, Brecht A, Geckeler KE and Gauglitz G (1996) Surface modification for direct immunoprobes. Biosensors & Bioelectronics 11:579–590

    Article  Google Scholar 

  • Pope NM, Kulcinski DL, Hardwick A and Chang YA (1993) New application of silane coupling agents for covalently binding-antibodies to glass and cellulose solid supports. Bioconjugate Chemistry 4:166–171

    Article  Google Scholar 

  • Porter MD, Bright TB, Allara DL and Chidsey CED (1987) Spontaneously organized molecular assemblies 4. Structural characterization of normal-alkyl thiol monolayers on gold by optical ellipsometry, infrared-spectroscopy, and electrochemistry. Journal of the American Chemical Society 109:3559–3568

    Article  Google Scholar 

  • Rickert J, Gopel W, Beck W, Jung G and Heiduschka P (1996) A ‘mixed’ self-assembled monolayer for an impedimetric immunosensor. Biosensors and Bioelectronics 11:757–768

    Google Scholar 

  • Robertson DL and Joyce GF (1990) Selection in vitro of an rna enzyme that specifically cleaves single-stranded DNA. Nature 344:467–468

    Article  Google Scholar 

  • Rosenfeld Y and Shai Y (2006) Lipopolysaccharide (endotoxin)-host defense antibacterial peptides interactions: Role in bacterial resistance and prevention of sepsis. Biochimica Et Biophysica Acta-Biomembranes 1758:1513–1522

    Article  Google Scholar 

  • Ruan CM, Yang LJ and Li YB (2002) Immunobiosensor chips for detection of escherichia coli o157 : H7 using electrochemical impedance spectroscopy. Analytical Chemistry 74:4814–4820

    Article  Google Scholar 

  • Rubinstein I, Steinberg S, Tor Y, Shanzer A and Sagiv J (1988) Ionic recognition and selective response in self-assembling monolayer membranes on electrodes. Nature 332: 426–429

    Article  Google Scholar 

  • Ruckenstein E and Li ZF (2005) Surface modification and functionalization through the self-assembled monolayer and graft polymerization. Advances in Colloid and Interface Science 113:43–63

    Article  Google Scholar 

  • Saal K, Tatte T, Tulp I, Kink I, Kurg A, Maeorg U, Rinken A and Lohmus A (2006) Sol-gel films for DNA microarray applications. Materials Letters 60:1833–1838

    Article  Google Scholar 

  • Sargent A, Loi T, Gal S and Sadik OA (1999) The electrochemistry of antibody-modified conducting polymer electrodes. Journal of Electroanalytical Chemistry 470:144–156

    Article  Google Scholar 

  • Sastry M (2002) Entrapment of proteins and DNA in thermally evaporated lipid films. Trends in Biotechnology 20:185–188

    Article  Google Scholar 

  • Schlenoff JB, Li M and Ly H (1995) Stability and self-exchange in alkanethiol monolayers. Journal of the American Chemical Society 117:12528–12536

    Article  Google Scholar 

  • Schneider TW and Buttry DA (1993) Electrochemical quartz-crystal microbalance studies of adsorption and desorption of self-assembled monolayers of alkyl thiols on gold. Journal of the American Chemical Society 115:12391–12397

    Article  Google Scholar 

  • Scholz F (ed) (2002) Electroanalytical methods. Guide to experiments and applications. Springer-Verlag, Berlin-Heidelberg-New York

    Google Scholar 

  • Shan D, He YY, Wang SX, Xue HG and Zheng H (2006) A porous poly(acrylonitrile-co-acrylic acid) film-based glucose biosensor constructed by electrochemical entrapment. Analytical Biochemistry 356: 215–221

    Article  Google Scholar 

  • Sluyters-Rehbach, M (1994) Impedances of Electrochemical Systems: Terminology, Nomenclature and Representation. Part I: Cells with Metal Electrodes and Liquid Solutions. Pure & Appl. Chem. 66: 1831–1891

    Article  Google Scholar 

  • Sotiropoulou S, Vamvakaki V and Chaniotakis NA (2005) Stabilization of enzymes in nanoporous materials for biosensor applications. Biosensors & Bioelectronics 20:1674–1679

    Article  Google Scholar 

  • Steinitz M (2000) Quantitation of the blocking effect of tween 20 and bovine serum albumin in elisa microwells. Analytical Biochemistry 282:232–238

    Article  Google Scholar 

  • Storri S, Santoni T, Minunni M and Mascini M (1998) Surface modifications for the development of piezoimmunosensors. Biosensors & Bioelectronics 13:347–357

    Article  Google Scholar 

  • Tahir ZM, Alocilja EC and Grooms DL (2005) Polyaniline synthesis and its biosensor application. Biosensors & Bioelectronics 20:1690–1695

    Article  Google Scholar 

  • Tlili A, Jarboui MA, Abdelghani A, Fathallah DM and Maaref MA (2005) A novel silicon nitride biosensor for specific antibody-antigen interaction. Materials Science & Engineering C-Biomimetic and Supramolecular Systems 25:490–495

    Google Scholar 

  • Troughton EB, Bain CD, Whitesides GM, Nuzzo RG, Allara DL and Porter MD (1988) Monolayer films prepared by the spontaneous self-assembly of symmetrical and unsymmetrical dialkyl sulfides from solution onto gold substrates - structure, properties, and reactivity of constituent functional-groups. Langmuir 4:365–385

    Article  Google Scholar 

  • Tuerk C and Gold L (1990) Systematic evolution of ligands by exponential enrichment: Rna ligands to bacteriophage t4 DNA polymerase. Science 249:505–510

    Article  Google Scholar 

  • Unwin PR and Bard AJ (1992) Scanning electrochemical microscopy .14. Scanning electrochemical microscope induced desorption - a new technique for the measurement of adsorption desorption-kinetics and surface-diffusion rates at the solid liquid interface. Journal of Physical Chemistry 96:5035–5045

    Article  Google Scholar 

  • Ur A and Brown D (1975) Impedance monitoring of bacterial activity. J Med Microbiol. 8:19–28

    Article  Google Scholar 

  • Vanýsek P (1997) Impact of electrode geometry, depth of immersion, and size on impedance measurements. Can. J. Chem. 75:1635–1642

    Article  Google Scholar 

  • Wang JB, Profitt JA, Pugia MJ and Suni II (2006) An nanoparticle conjugation for impedance and capacitance signal amplification in biosensors. Analytical Chemistry. 78:1769–1773

    Article  Google Scholar 

  • Williams DD, Benedek O and Turnbough CL (2003) Species-specific peptide ligands for the detection of bacillus anthracis spores. Applied and Environmental Microbiology 69:6288–6293

    Article  Google Scholar 

  • Wood GS and Warnke R (1981) Suppression of endogenous avidin-binding activity in tissues and its relevance to biotin-avidin detection systems. Journal of Histochemistry & Cytochemistry 29:1196–1204

    Google Scholar 

  • Yallow R and Berson S (1959) Assay of plasma insulin in human subjects by imunological methods. Nature 185:1648–1649

    Article  Google Scholar 

  • Yang LJ and Li YB (2006) Detection of viable salmonella using microelectrode-based capacitance measurement coupled with immunomagnetic separation. Journal of Microbiological Methods 64:9–16

    Article  Google Scholar 

  • Yang LJ and Li YB, Griffis CL and Johnson MG (2004) Interdigitated microelectrode (ime) impedance sensor for the detection of viable salmonella typhimurium. Biosensors & Bioelectronics 19:1139–1147

    Article  Google Scholar 

  • Yang LJ, Li YB, and Erf GF (2004) Interdigitated array microelectrode-based electrochemical impedance immunosensor for detection of escherichia coli o157 : H7. Analytical Chemistry 76:1107–1113

    Article  Google Scholar 

  • Yidiz HB and Toppare L (2006) Biosensing approach for alcohol determination using immobilized alcohol oxidase. Biosensors & Bioelectronics 21:2306–2310

    Article  Google Scholar 

  • Yu XB, Lv R, Ma ZQ, Liu ZH, Hao YH, Li QZ and Xu DK (2006) An impedance array biosensor for detection of multiple antibody-antigen interactions. Analyst 131:745–750

    Article  Google Scholar 

  • Zhao Y-D, Pang D-W, Hu S, Wang Z-L, Cheng J-K, Qi Y-P, Dai H-P, Mao B-W, Tian Z-Q, Luo J and Lin Z-H (1999) DNA-modified electrodes part 3.: Spectroscopic characterization of DNA-modified gold electrodes. Analytica Chimica Acta 388:93–101

    Google Scholar 

  • Zhou H-X and Dill KA (2001) Stabilization of proteins in confined spaces. Biochemistry 40:11289–11293

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Muñoz-Berbel, X., Godino, N., Laczka, O., Baldrich, E., Muñoz, F.X., del Campo, F.J. (2008). Impedance-Based Biosensors for Pathogen Detection. In: Zourob, M., Elwary, S., Turner, A. (eds) Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems. Springer, New York, NY. https://doi.org/10.1007/978-0-387-75113-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-75113-9_15

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-75112-2

  • Online ISBN: 978-0-387-75113-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics