Impedance-Based Biosensors for Pathogen Detection

  • Xavier Muñoz-Berbel
  • Neus Godino
  • Olivier Laczka
  • Eva Baldrich
  • Francesc Xavier Muñoz
  • Fco Javier del Campo


Electrochemical impedance spectroscopy (EIS) is an important detection technique for biosensors. In the field of immunosensors, and particularly pathogen detection, it is one of the preferred electrochemical techniques because it does away with the use of enzyme labels or redox mediators. This chapter provides an introduction to the fundamentals of EIS and basic data analysis, with an emphasis on the most common features found in immunosensors and possible experimental limitations.

This chapter then discusses a series of functionalisation approaches that can be used in the development of an immunosensor for the detection of bacteria. This is followed by a selection of impedance-based immunosensor examples from the literature.


Electrochemical Impedance Spectroscopy Newcastle Disease Virus Constant Phase Element Pathogen Detection Interdigitated Electrode 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alfonta L, Bardea A, Khersonsky O, Katz E and Willner I (2001) Chronopotentiometry and faradaic impedance spectroscopy as signal transduction methods for the biocatalytic precipitation of an insoluble product on electrode supports: Routes for enzyme sensors, immunosensors and DNA sensors. Biosensors & Bioelectronics 16:675–687CrossRefGoogle Scholar
  2. Alfonta L, Singh AK and Willner I (2001) Liposomes labeled with biotin and horseradish peroxidase: A probe for the enhanced amplification of antigen-antibody or oligonucleotide-DNA sensing processes by the precipitation of an insoluble product on electrodes. Analytical Chemistry 73:91–102CrossRefGoogle Scholar
  3. Alfonta L, Willner I, Throckmorton DJ and Singh AK (2001) Electrochemical and quartz crystal microbalance detection of the cholera toxin employing horseradish peroxidase and gm1-functionalized liposomes. Anal. Chem. 73:5287–5295CrossRefGoogle Scholar
  4. Alon R, Bayer EA and Wilchek M (1993) Cell-adhesion to streptavidin via rgd-dependent integrins. European Journal of Cell Biology 60:1–11Google Scholar
  5. Anderson GP, Jacoby MA, Ligle FS, and King KD (1997) Effectiveness of protein a for antibody immobilization for a fiber optic biosensor. Biosensors and Bioelectronics 12: 329–336CrossRefGoogle Scholar
  6. Awais R, Fukudomi H, Miyanaga K, Unno H and Tanji Y (2006) A recombinant bacteriophage-based assay for the discriminative detection of culturable and viable but nonculturable escherichia coli o157 : H7. Biotechnology Progress 22:853–859CrossRefGoogle Scholar
  7. Babacan S, Pivarnik P, Letcher S and Rand AG (2000) Evaluation of antibody immobilization methods for piezoelectric biosensor application. Biosensors & Bioelectronics 15:615–621CrossRefGoogle Scholar
  8. Bagotsky VS (2006) Fundamentals of Electrochemistry. John Wiley & Sons, HobokenGoogle Scholar
  9. Bain CD and Whitesides GM (1988) Formation of 2-component surfaces by the spontaneous assembly of monolayers on gold from solutions containing mixtures of organic thiols. Journal of the American Chemical Society 110:6560–6561CrossRefGoogle Scholar
  10. Bain CD and Whitesides GM (1989) A study by contact-angle of the acid-base behavior of monolayers containing omega-mercaptocarboxylic acids adsorbed on gold - an example of reactive spreading. Langmuir 5:1370–1378CrossRefGoogle Scholar
  11. Barak O, Treat JR and James WD (2005) Antimicrobial peptides: Effectors of innate immunity in the skin. Adv Dermatol. 21:357–374CrossRefGoogle Scholar
  12. Bard AJ and Faulkner LR (2001) Electrochemical Methods: Fundamentals and Applications. John Wiley & Sons, New YorkGoogle Scholar
  13. Bardea A, Dagan A and Willner I (1999) Amplified electronic transduction of oligonucleotide interactions: Novel routes for tay-sachs biosensors. Analytica Chimica Acta. 385:33–43CrossRefGoogle Scholar
  14. Bardea A, PatolskyF, Dagan A and Willner I (1999) Sensing and amplification of oligonucleoatide-DNA interactions by means of impedance spectrocospy: A route to a tay-sachs sensor. Chem. Commun. 21–22Google Scholar
  15. Barsoukov E and Macdonald JR (eds) (2005) Impedance Spectroscopy: Theory, Experiment and Applications. John Wiley & Sons, HobokenGoogle Scholar
  16. Bartlett PN, Birkin PR, Wang JH, Palmisano F and De BenedettoG (1998) An enzyme switch employing direct electrochemical communication between horseradish peroxidase and a poly(aniline) film. Analytical Chemistry 70:3685–3694Google Scholar
  17. Bayer EA, Benhur H and Wilchek M (1990) Isolation and properties of streptavidin. Methods in Enzymology 184:80–89CrossRefGoogle Scholar
  18. Berggren C and Johansson G (1997). Capacitance measurements of antibody-antigen interactions in a flow system. Anal. Chem. 69:3651–3657CrossRefGoogle Scholar
  19. Berggren C, Bjarnason B and Johansson G (2001) Capacitive biosensors. Electroanalysis 13:173–180CrossRefGoogle Scholar
  20. Bhatia SK, Shriverlake LC, Prior KJ, Georger JH, Calvert JM, Bredehorst R and Ligler FS (1989) Use of thiol-terminal silanes and heterobifunctional crosslinkers for immobilization of antibodies on silica surfaces. Analytical Biochemistry 178:408–413CrossRefGoogle Scholar
  21. Billard V, Martelet C, Binder P and Therasse J (1991) Toxin detection using capacitance measurements on immunospecies grafted onto a semiconductor substrate. Analytica Chimica Acta. 249:367–372CrossRefGoogle Scholar
  22. Brett CMA and Oliveira Brett AM (1993) Electrochemistry: Principles, Fundamentals and Applications. Oxford University Press, OxfordGoogle Scholar
  23. Brewer NJ, Janusz S, Critchley K, Evans SD and Leggett GJ (2005). Photooxidation of self-assembled monolayers by exposure to light of wavelength 254 nm: A static sims study. Journal of Physical Chemistry B. 109:11247–11256CrossRefGoogle Scholar
  24. Butler JE (2000) Solid supports in enzyme-linked immunosorbent assay and other solid-phase immunoassays. Methods 22:4–23CrossRefGoogle Scholar
  25. Cady P. (1975) Rapid automated bacterial identification by impedance measurement. In: C.G. Heden, Editor, New Approaches to the Identification of Mocroorganisms, Wiley, New York, NY (1975), pp. 73–99.Google Scholar
  26. Calvo EJ, Danilowicz C, Lagier CM, Manrique J and Otero M (2004) Characterization of self-assembled redox polymer and antibody molecules on thiolated gold electrodes. Biosensors & Bioelectronics 19:1219–1228CrossRefGoogle Scholar
  27. Chaki NK and Vijayamohanan K (2002) Self-assembled monolayers as a tunable platform for biosensor applications. Biosensors & Bioelectronics 17:1–12CrossRefGoogle Scholar
  28. Characklis WG and Marshall KC (ed) (1990) Biofilms. John Wiley, New YorkGoogle Scholar
  29. Chen TH, Small DA, McDermott MK, Bentley WE and Payne GF (2003) Enzymatic methods for in situ cell entrapment and cell release. Biomacromolecules 4:1558–1563CrossRefGoogle Scholar
  30. Chin SF and Pantano P (2006) Antibody-modified microwell arrays and photobiotin patterning on hydrocarbon-free glass. Microchemical Journal 84:1–9CrossRefGoogle Scholar
  31. Christensen PA and Hamnet A (1994) Techniques and Mechanisms in Electrochemistry. Blackie Academic and Professional, London-Glasgow-New YorkGoogle Scholar
  32. Cosnier S (1999) Biomolecule immobilisation on electrode surfaces by entrapment or attachment to electrochemically polymerized films. Biosensors and Bioelectronics 14:443–456CrossRefGoogle Scholar
  33. Cosnier S (2003) Biosensors based on electropolymerized films: New trends. Analytical and Bioanalytical Chemistry 377:507–520CrossRefGoogle Scholar
  34. Costerton JW, Stewart PS and Greenberg EP (1999) Bacterial biofilms: A common cause of persistent infections. Science. 284: 1318–1322.CrossRefGoogle Scholar
  35. de la Rica R, Fernandez-Sanchez C and Baldi A (2006) Polysilicon interdigitated electrodes as impedimetric sensors. Electrochemistry Communications 8:1239–1244CrossRefGoogle Scholar
  36. Ding SJ, Chang BW, Wu CC, Lai MF and Chang HC (2005) Electrochemical evaluation of avidin-biotin interaction on self-assembled gold electrodes. Electrochimica Acta. 50:3660–3666CrossRefGoogle Scholar
  37. Edgar R, McKinstry M, Hwang J, Oppenheim AB, Fekete RA, Giulian G, Merril C, Nagashima K and Adhya S (2006) High-sensitivity bacterial detection using biotin-tagged phage and quantum-dot nanocomplexes. Proceedings of the National Academy of Sciences of the United States of America 103:4841–4845CrossRefGoogle Scholar
  38. Ellington AD and Szostak JW (1990) In vitro selection of rna molecules that bind specific ligands. Nature 346:818–822CrossRefGoogle Scholar
  39. Elsholz B, Worl R, Blohm L, Albers J, Feucht H, Grunwald T, Jurgen B, Schweder T and Hintsche R (2006) Automated detection and quantitation of bacterial rna by using electrical microarrays. Analytical Chemistry 78:4794–4802CrossRefGoogle Scholar
  40. Everett WR and Fritschfaules I (1995) Factors that influence the stability of self-assembled organothiols on gold under electrochemical conditions. Analytica Chimica Acta. 307:253–268CrossRefGoogle Scholar
  41. Farabullini F, Lucarelli F, Palchetti I, Marrazza G and Mascini M (2006) Disposable electrochemical genosensor for the simultaneous analysis of different bacterial food contaminants. Biosensors and Bioelectronics 22:1544–1549CrossRefGoogle Scholar
  42. Farace G, Lillie G, Hianik T, Payne P and Vadgama P (2002) Reagentless biosensing using electrochemical impedance spectroscopy. Bioelectrochemistry 55:1–3CrossRefGoogle Scholar
  43. Ferris CD (1975) Introduction to bioelectrodes. Plenum Press, New YorkGoogle Scholar
  44. Franceschetti DR and Macdonald JR (1979) Diffusion of neutral and charged species under small-signal ac conditions. Journal of Electroanalytical Chemistry 101:307–316Google Scholar
  45. Fricke H (1932) The theory of electrolytic polarization. Philosophical Magazine 7:310–318Google Scholar
  46. Gabrielli C (1995) Need name of article here. In: Rubinstein I (ed) Physical Electrochemistry Marcel Dekker, Inc., New YorkGoogle Scholar
  47. Gabrielli C (1998) Identification of electrochemical processes by frequency response analysis. Solartron Analytical, Technical Note 004/83Google Scholar
  48. Gibson DM (ed) (2001) Conductance/impedance techniques for microbial assay. CRP Press Inc., Boca Raton, FloridaGoogle Scholar
  49. Goding JW (1978) Use of staphylococcal protein-a as an immunological reagent. Journal of Immunological Methods 20:241–253CrossRefGoogle Scholar
  50. Goldman ER, Pazirandeh MP, Mauro JM, King KD, Frey JC and Anderson GP (2000) Phage-displayed peptides as biosensor reagents. Journal of Molecular Recognition 13:382–387CrossRefGoogle Scholar
  51. Gomez-Sjoberg R, Morisette DT and Bashir R (2005) Impedance microbiology-on-a-chip: Microfluidic bioprocessor for rapid detection of bacterial metabolism. Journal of Microelectromechanical Systems 14:829–838CrossRefGoogle Scholar
  52. Guiseppi-Elie A, Sheppard Jr. NF, Brahim S and Narinesingh D (2001) Enzyme microgels in packed-bed bioreactors with downstream amperometric detection using microfabricated interdigitated microsensor electrode arrays. Biotechnology and Bioengineering 75:475–484CrossRefGoogle Scholar
  53. Gyepi-Garbrah SH and Silerova R (2001) Probing temperature-dependent behaviour in self-assembled monolayers by ac-impedance spectroscopy. Physical Chemistry Chemical Physics 3:2117–2123CrossRefGoogle Scholar
  54. Hanbury CM, Miller WG and Harris RB (1997) Enzyme microgels in packed-bed bioreactors with downstream amperometric detection using microfabricated interdigitated microsensor electrode arrays. Clinical Chemistry 43:2128–2136Google Scholar
  55. Hautman J and Klein ML (1990) Molecular-dynamics simulation of the effects of temperature on a dense monolayer of long-chain molecules. Journal of Chemical Physics 93:7483–7492CrossRefGoogle Scholar
  56. Heitz F and Van Mau N (2002) Protein structural changes induced by their uptake at interfaces. Biochimica et Biophysica Acta 1597:1–11Google Scholar
  57. Hermanson GT (1996) Bioconjugate Techniques. Academic Press, LondonGoogle Scholar
  58. Ho JAA, Zeng SC, Huang MR and Kuo HY (2006) Development of liposomal immunosensor for the measurement of insulin with femtomole detection. Analytica Chimica Acta. 556:127–132CrossRefGoogle Scholar
  59. Holliger P and Hudson PJ (2005) Engineered antibody fragments and the rise of single domains. Nature Biotechnology 23:1126–1136CrossRefGoogle Scholar
  60. Hoogenboom HR (2005) Selecting and screening recombinant antibody libraries. Nature Biotechnology 23:1105–1116CrossRefGoogle Scholar
  61. Huang JY and Hemminger JC (1993) Photooxidation of thiols in self-assembled monolayers on gold. Journal of the American Chemical Society 115:3342–3343CrossRefGoogle Scholar
  62. Huang TT, Sturgis J, Gomez R, Geng T, Bashir R, Bhunia AK, Robinson JP and Ladisch MR (2003) Composite surface for blocking bacterial adsorption on protein biochips. Biotechnology and Bioengineering 81:618–624CrossRefGoogle Scholar
  63. Ivnitski D, Abdel-Hamid I, Atanasov P, Wilkins E and Stricker S (2000) Application of electrochemical biosensors for detection of food pathogenic bacteria. Electroanalysis 12:317–325CrossRefGoogle Scholar
  64. K’Owino IO and Sadik OA (2005) Impedance spectroscopy: A powerful tool for rapid biomolecular screening and cell culture monitoring. Electroanalysis 17:2101–2113CrossRefGoogle Scholar
  65. Karyakin A, Presnova G, Rubtsova M and Egorov A (2000) Oriented immobilization of antibodies onto the gold surfaces via their native thiol groups. Anal Chem. 72:3805–3811CrossRefGoogle Scholar
  66. Katz E and Willner I (2003) Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: Routes to impedimetric immunosensors, DNA-sensors, and enzyme biosensors. Electroanalysis 15:913–947CrossRefGoogle Scholar
  67. Kenny G and Dunsmoor C (1987) Effectiveness of detergents in blocking nonspecific binding of igg in the enzyme-linked immunosorbent assay (elisa) depends upon the type of polystyrene used. Israel Journal of Medical Sciences 23:732–734Google Scholar
  68. Kim GH, Rand AG and Letcher SV (2003) Impedance characterization of a piezoelectric immunosensor part ii: Salmonella typhimurium detection using magnetic enhancement. Biosensors & Bioelectronics 18:91–99CrossRefGoogle Scholar
  69. Kim HJ, Bennetto HP, Halablab MA, Choi CH and Yoon S (2006) Performance of an electrochemical sensor with different types of liposomal mediators for the detection of hemolytic bacteria. Sensors and Actuators B-Chemical 119:143–149CrossRefGoogle Scholar
  70. Klussmann S, Nolte A, Bald R, Erdmann VA and Fürste JP (1996) Mirror-image rna that binds d-adenosine. Nature Biotecnology 14:1112–1115CrossRefGoogle Scholar
  71. Ko HY, Lee HW and Moon J (2004) Fabrication of colloidal self-assembled monolayer (sam) using monodisperse silica and its use as a lithographic mask. Thin Solid Films 447:638–644CrossRefGoogle Scholar
  72. Koh W-G, Revzin A and Pishko MV (2002) Poly(ethylene glycol) hydrogel microstructures encapsulating living cells. Langmuir 18:2459–2462CrossRefGoogle Scholar
  73. Kohler G and Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity (reprinted from Nature, vol 256, 1975). Nature 256:495–497CrossRefGoogle Scholar
  74. Kumar A, Larsson O, Parodi D, Liang Z (2000) Silanized nucleic acids: A general platform for DNA immobilization. Nucleic Acids Res. 28(14):e71Google Scholar
  75. Kusser W (2000) Chemically modified nucleic acid aptamers for in vitro selections: Evolving evolution. Journal of Biotechnology 74:27–38Google Scholar
  76. Lappin-Scott HM and Costerton JW (eds) (1995) Microbial biofilms. Cambridge University Press, CambridgeGoogle Scholar
  77. Lasic DD (1998) Novel applications of liposomes. Trends in Biotechnology 16:307–321CrossRefGoogle Scholar
  78. Laureyn W, Nelis D, Van Gerwen P, Baert K, Hermans L, Magnee R, Pireaux JJ and Maes G (2000) Nanoscaled interdigitated titanium electrodes for impedimetric biosensing. Sensors and Actuators B-Chemical. 68:360–370CrossRefGoogle Scholar
  79. Lee HY, Jung HS, Fujikawa K, Park JW, Kim JM, Yukimasa T, Sugihara H and Kawai T (2005) New antibody immobilization method via functional liposome layer for specific protein assays. Biosensors & Bioelectronics 21:833–838CrossRefGoogle Scholar
  80. Lee TC, Yusoff K, Nathan S and Tana WS (2006) Detection of virulent newcastle disease virus using a phage-capturing dot blot assay. Journal of Virological Methods 136:224–229CrossRefGoogle Scholar
  81. Liu GY, Yang GH and Amro NA (2004) Molecular level approach to inhibit degradations of passivation layers on metal surfaces. Abstracts of Papers of the American Chemical Society 227:U1538-U1538Google Scholar
  82. Liu RH, Yang JN, Lenigk R, Bonanno J and Grodzinski P (2004) Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection. Analytical Chemistry 76:1824–1831CrossRefGoogle Scholar
  83. Love JC, Estroff LA, Kriebel JK, Nuzzo RG and Whitesides GM (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chemical Reviews. 105:1103–1169CrossRefGoogle Scholar
  84. Lu HC, Chen HM, Lin YS and Lin JW (2000) A reusable and specific protein a-coated piezoelectric biosensor for flow injection immunoassay. Biotechnology Progress 16:116–124CrossRefGoogle Scholar
  85. Lucarelli F, Marrazza G and Mascini M (2005) Enzyme-based impedimetric detection of pcr products using oligonucleotide-modified screen-printed gold electrodes. Biosensors & Bioelectronics 20:2001–2009CrossRefGoogle Scholar
  86. Macdonald JR (1984) Note on the parameterization of the constant-phase admittance element. Solid State Ionics 13:147–149MathSciNetCrossRefGoogle Scholar
  87. Mamishev AV, Sundara-Rajan K, Yang F, Du YQ and Zahn M (2004) Interdigital sensors and transducers. Proceedings of the IEEE 92:808–845CrossRefGoogle Scholar
  88. Mao XL, Yang LJ, Su XL and Li YB (2006) A nanoparticle amplification based quartz crystal microbalance DNA sensor for detection of escherichia coli o157 : H7. Biosensors & Bioelectronics 21:1178–1185CrossRefGoogle Scholar
  89. Martin CR and Parthasarathy RV (1995) Polymeric microcapsule arrays. Advanced Materials 7:487–488CrossRefGoogle Scholar
  90. McAdams ET (1989) Effect of surface topography on the electrode-electrolyte interface impedance. Surface Topography 2:107–122Google Scholar
  91. McCoy MH and Wang E (2005) Use of electric cell-substrate impedance sensing as a tool for quantifying cytopathic effect in influenza a virus infected mdck cells in real-time. Journal of Virological Methods 130:157–161CrossRefGoogle Scholar
  92. Melo LF, Bott TR, Fletcher M and Capdeville B (ed) (1992) Biofilms: Science and technology. Kluwer Academic Publishers, The NetherlandsGoogle Scholar
  93. Memoli A, Annesini MC, Mascini M, Papale S and Petralito S (2002) A comparison between different immobilised glucoseoxidase-based electrodes. Journal of Pharmaceutical and Biomedical Analysis 29:1045–1052CrossRefGoogle Scholar
  94. Minett AI, Barisci JN and Wallace GG (2002) Coupling conducting polymers and mediated electrochemical responses for the detection of listeria. Analytica Chimica Acta. 475:37–45CrossRefGoogle Scholar
  95. Mubammad-Tahir Z and Alocilja EC (2003) A conductometric biosensor for biosecurity. Biosensors & Bioelectronics 18:813–819CrossRefGoogle Scholar
  96. Nanda S, Muralidhar K and Kar SK (2002) Thermostable alpha-amylase conjugated antibodies as probes for immunodetection in elisa. Journal of Immunoassay & Immunochemistry 23:327–345CrossRefGoogle Scholar
  97. Nichkova M, Dosev D, Gee SJ, Hammock BD and Kennedy IM (2005) Microarray immunoassay for phenoxybenzoic acid using polymer encapsulated eu: Gd2o3 nanoparticles as fluorescent labels. Analytical Chemistry 77:6864–6873CrossRefGoogle Scholar
  98. Nolte A, Klussmann S, Bald R, Erdmann VA and Fürste JP (1996) Mirror-design of l-oligonucleotide ligands binding to l-arginine. Nature Biotechnology 14:1116–1119CrossRefGoogle Scholar
  99. Nuzzo RG and Allara DL (1983) Adsorption of bifunctional organic disulfides on gold surfaces. Journal of the American Chemical Society 105:4481–4483CrossRefGoogle Scholar
  100. Olsen EV, Sorokulova IB, Petrenko VA, Chen IH, Barbaree JM and Vodyanoy VJ (2006) Affinity-selected filamentous bacteriophage as a probe for acoustic wave biodetectors of salmonella typhimurium. Biosensors & Bioelectronics 21:1434–1442CrossRefGoogle Scholar
  101. Olthuis W, Streekstra W and Bergveld P (1995) Theoretical and experimental-determination of cell constants of planar-interdigitated electrolyte conductivity sensors. Sensors and Actuators B-Chemical 24:252–256CrossRefGoogle Scholar
  102. Ouerghi O, Touhami A, Jaffrezic-Renault N, Martelet C, Ouada H and Cosnier S (2002) Impedimetric immunosensor using avidin-biotin for antibody immobilization. Bioelectrochemistry 56:131–133CrossRefGoogle Scholar
  103. Palecek E, Jelen F and Trnkova L (1986) Cyclic voltammetry of DNA at a mercury electrode: An anodic peak specific for guanine. General Physiology and Biophysics 5:315–329Google Scholar
  104. Palecek E (1988) Adsorptive transfer stripping voltammetry: Determination of nanogram quantities of DNA immobilized at the electrode surface. Anal Biochem. 170:421–431CrossRefGoogle Scholar
  105. Palecek E and Fojta M (1994) Differential pulse voltammetric determination of rna at the picomole level in the presence of DNA and nucleic acid components. Analytical Chemistry 66:1566–1571CrossRefGoogle Scholar
  106. Pantano P and Chin SF (2003) Direct photobiotin modification of glass surfaces for antibody patterning applications. Abstracts of Papers of the American Chemical Society 225:U125-U125Google Scholar
  107. Parida SK, Dash S, Patel S and Mishra BK (2006) Adsorption of organic molecules on silica surface. Advances in Colloid and Interface Science 121:77–110CrossRefGoogle Scholar
  108. Park I-S and Kim N (1998) Thiolated salmonella antibody immobilization onto the gold surface of piezoelectric quartz crystal. Biosensors and Bioelectronics 13:1091–1097CrossRefGoogle Scholar
  109. Park S-J, Taton TA and Mirkin CA (2002) Array-based electrical detection of DNA with nanoparticle probes. Science 295:1503–1506CrossRefGoogle Scholar
  110. Patel AC, Li SX, Yuan JM and Wei Y (2006) In situ encapsulation of horseradish peroxidase in electrospun porous silica fibers for potential biosensor applications. Nano Letters 6:1042–1046CrossRefGoogle Scholar
  111. Patolsky F, Katz E, Bardea A and Willner I (1999) Enzyme-linked amplified electrochemical sensing of oligonucleotide-DNA interactions by means of the precipitation of an insoluble product and using impedance spectroscopy. Langmuir 15:3703–3706CrossRefGoogle Scholar
  112. Patolsky F, Lichtenstein A and Willner I (2001) Electronic transduction of DNA sensing processes on surfaces: Amplification of DNA detection and analysis of single-base mismatches by tagged liposomes. Journal of the Americal Chemical Society 123:5194–5205CrossRefGoogle Scholar
  113. Patolsky F, Lichtenstein A, Kotler M and Willner I (2001) Electronic transduction of polymerase or reverse transcriptase induced replication processes on surfaces: Highly sensitive and specific detection of viral genomes. Angew Chem Int Ed Engl. 40:2261–2265CrossRefGoogle Scholar
  114. Pavlinkova G Lou DY and Kohler H (2000) Site-specific photobiotinylation of antibodies, light chains, and immunoglobulin fragments. Methods 22:44–48CrossRefGoogle Scholar
  115. Pei R, Cheng Z, Wang E, Yang X (2001) Amplification of antigen-antibody interactions based on biotin labeled protein-streptavidin network complex using impedance spectroscopy. Biosensors & Bioelectronics. 16:355–361CrossRefGoogle Scholar
  116. Pejcic B and De Marco R (2006) Impedance spectroscopy: Over 35 years of electrochemical sensor optimization. Electrochimica Acta. 51:6217–6229CrossRefGoogle Scholar
  117. Piehler J, Brecht A, Geckeler KE and Gauglitz G (1996) Surface modification for direct immunoprobes. Biosensors & Bioelectronics 11:579–590CrossRefGoogle Scholar
  118. Pope NM, Kulcinski DL, Hardwick A and Chang YA (1993) New application of silane coupling agents for covalently binding-antibodies to glass and cellulose solid supports. Bioconjugate Chemistry 4:166–171CrossRefGoogle Scholar
  119. Porter MD, Bright TB, Allara DL and Chidsey CED (1987) Spontaneously organized molecular assemblies 4. Structural characterization of normal-alkyl thiol monolayers on gold by optical ellipsometry, infrared-spectroscopy, and electrochemistry. Journal of the American Chemical Society 109:3559–3568CrossRefGoogle Scholar
  120. Rickert J, Gopel W, Beck W, Jung G and Heiduschka P (1996) A ‘mixed’ self-assembled monolayer for an impedimetric immunosensor. Biosensors and Bioelectronics 11:757–768Google Scholar
  121. Robertson DL and Joyce GF (1990) Selection in vitro of an rna enzyme that specifically cleaves single-stranded DNA. Nature 344:467–468CrossRefGoogle Scholar
  122. Rosenfeld Y and Shai Y (2006) Lipopolysaccharide (endotoxin)-host defense antibacterial peptides interactions: Role in bacterial resistance and prevention of sepsis. Biochimica Et Biophysica Acta-Biomembranes 1758:1513–1522CrossRefGoogle Scholar
  123. Ruan CM, Yang LJ and Li YB (2002) Immunobiosensor chips for detection of escherichia coli o157 : H7 using electrochemical impedance spectroscopy. Analytical Chemistry 74:4814–4820CrossRefGoogle Scholar
  124. Rubinstein I, Steinberg S, Tor Y, Shanzer A and Sagiv J (1988) Ionic recognition and selective response in self-assembling monolayer membranes on electrodes. Nature 332: 426–429CrossRefGoogle Scholar
  125. Ruckenstein E and Li ZF (2005) Surface modification and functionalization through the self-assembled monolayer and graft polymerization. Advances in Colloid and Interface Science 113:43–63CrossRefGoogle Scholar
  126. Saal K, Tatte T, Tulp I, Kink I, Kurg A, Maeorg U, Rinken A and Lohmus A (2006) Sol-gel films for DNA microarray applications. Materials Letters 60:1833–1838CrossRefGoogle Scholar
  127. Sargent A, Loi T, Gal S and Sadik OA (1999) The electrochemistry of antibody-modified conducting polymer electrodes. Journal of Electroanalytical Chemistry 470:144–156CrossRefGoogle Scholar
  128. Sastry M (2002) Entrapment of proteins and DNA in thermally evaporated lipid films. Trends in Biotechnology 20:185–188CrossRefGoogle Scholar
  129. Schlenoff JB, Li M and Ly H (1995) Stability and self-exchange in alkanethiol monolayers. Journal of the American Chemical Society 117:12528–12536CrossRefGoogle Scholar
  130. Schneider TW and Buttry DA (1993) Electrochemical quartz-crystal microbalance studies of adsorption and desorption of self-assembled monolayers of alkyl thiols on gold. Journal of the American Chemical Society 115:12391–12397CrossRefGoogle Scholar
  131. Scholz F (ed) (2002) Electroanalytical methods. Guide to experiments and applications. Springer-Verlag, Berlin-Heidelberg-New YorkGoogle Scholar
  132. Shan D, He YY, Wang SX, Xue HG and Zheng H (2006) A porous poly(acrylonitrile-co-acrylic acid) film-based glucose biosensor constructed by electrochemical entrapment. Analytical Biochemistry 356: 215–221CrossRefGoogle Scholar
  133. Sluyters-Rehbach, M (1994) Impedances of Electrochemical Systems: Terminology, Nomenclature and Representation. Part I: Cells with Metal Electrodes and Liquid Solutions. Pure & Appl. Chem. 66: 1831–1891CrossRefGoogle Scholar
  134. Sotiropoulou S, Vamvakaki V and Chaniotakis NA (2005) Stabilization of enzymes in nanoporous materials for biosensor applications. Biosensors & Bioelectronics 20:1674–1679CrossRefGoogle Scholar
  135. Steinitz M (2000) Quantitation of the blocking effect of tween 20 and bovine serum albumin in elisa microwells. Analytical Biochemistry 282:232–238CrossRefGoogle Scholar
  136. Storri S, Santoni T, Minunni M and Mascini M (1998) Surface modifications for the development of piezoimmunosensors. Biosensors & Bioelectronics 13:347–357CrossRefGoogle Scholar
  137. Tahir ZM, Alocilja EC and Grooms DL (2005) Polyaniline synthesis and its biosensor application. Biosensors & Bioelectronics 20:1690–1695CrossRefGoogle Scholar
  138. Tlili A, Jarboui MA, Abdelghani A, Fathallah DM and Maaref MA (2005) A novel silicon nitride biosensor for specific antibody-antigen interaction. Materials Science & Engineering C-Biomimetic and Supramolecular Systems 25:490–495Google Scholar
  139. Troughton EB, Bain CD, Whitesides GM, Nuzzo RG, Allara DL and Porter MD (1988) Monolayer films prepared by the spontaneous self-assembly of symmetrical and unsymmetrical dialkyl sulfides from solution onto gold substrates - structure, properties, and reactivity of constituent functional-groups. Langmuir 4:365–385CrossRefGoogle Scholar
  140. Tuerk C and Gold L (1990) Systematic evolution of ligands by exponential enrichment: Rna ligands to bacteriophage t4 DNA polymerase. Science 249:505–510CrossRefGoogle Scholar
  141. Unwin PR and Bard AJ (1992) Scanning electrochemical microscopy .14. Scanning electrochemical microscope induced desorption - a new technique for the measurement of adsorption desorption-kinetics and surface-diffusion rates at the solid liquid interface. Journal of Physical Chemistry 96:5035–5045CrossRefGoogle Scholar
  142. Ur A and Brown D (1975) Impedance monitoring of bacterial activity. J Med Microbiol. 8:19–28CrossRefGoogle Scholar
  143. Vanýsek P (1997) Impact of electrode geometry, depth of immersion, and size on impedance measurements. Can. J. Chem. 75:1635–1642CrossRefGoogle Scholar
  144. Wang JB, Profitt JA, Pugia MJ and Suni II (2006) An nanoparticle conjugation for impedance and capacitance signal amplification in biosensors. Analytical Chemistry. 78:1769–1773CrossRefGoogle Scholar
  145. Williams DD, Benedek O and Turnbough CL (2003) Species-specific peptide ligands for the detection of bacillus anthracis spores. Applied and Environmental Microbiology 69:6288–6293CrossRefGoogle Scholar
  146. Wood GS and Warnke R (1981) Suppression of endogenous avidin-binding activity in tissues and its relevance to biotin-avidin detection systems. Journal of Histochemistry & Cytochemistry 29:1196–1204Google Scholar
  147. Yallow R and Berson S (1959) Assay of plasma insulin in human subjects by imunological methods. Nature 185:1648–1649CrossRefGoogle Scholar
  148. Yang LJ and Li YB (2006) Detection of viable salmonella using microelectrode-based capacitance measurement coupled with immunomagnetic separation. Journal of Microbiological Methods 64:9–16CrossRefGoogle Scholar
  149. Yang LJ and Li YB, Griffis CL and Johnson MG (2004) Interdigitated microelectrode (ime) impedance sensor for the detection of viable salmonella typhimurium. Biosensors & Bioelectronics 19:1139–1147CrossRefGoogle Scholar
  150. Yang LJ, Li YB, and Erf GF (2004) Interdigitated array microelectrode-based electrochemical impedance immunosensor for detection of escherichia coli o157 : H7. Analytical Chemistry 76:1107–1113CrossRefGoogle Scholar
  151. Yidiz HB and Toppare L (2006) Biosensing approach for alcohol determination using immobilized alcohol oxidase. Biosensors & Bioelectronics 21:2306–2310CrossRefGoogle Scholar
  152. Yu XB, Lv R, Ma ZQ, Liu ZH, Hao YH, Li QZ and Xu DK (2006) An impedance array biosensor for detection of multiple antibody-antigen interactions. Analyst 131:745–750CrossRefGoogle Scholar
  153. Zhao Y-D, Pang D-W, Hu S, Wang Z-L, Cheng J-K, Qi Y-P, Dai H-P, Mao B-W, Tian Z-Q, Luo J and Lin Z-H (1999) DNA-modified electrodes part 3.: Spectroscopic characterization of DNA-modified gold electrodes. Analytica Chimica Acta 388:93–101Google Scholar
  154. Zhou H-X and Dill KA (2001) Stabilization of proteins in confined spaces. Biochemistry 40:11289–11293CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Xavier Muñoz-Berbel
    • 1
  • Neus Godino
    • 1
  • Olivier Laczka
    • 1
  • Eva Baldrich
    • 1
  • Francesc Xavier Muñoz
    • 1
  • Fco Javier del Campo
    • 2
  1. 1.Centro Nacional de Microelectronica IMB-CNM-CSIC; Esfera UAB; Campus Universidad Autónoma de BarcelonaBarcelonaSpain
  2. 2.Instituto de Biotecnología y Biomedicina Departamento de Microbiología y GenéticaUniversidad Autónoma de BarcelonaBarcelonaSpain

Personalised recommendations