Microbial Genetic Analysis Based on Field Effect Transistors

  • Yuji Miyahara
  • Toshiya Sakata
  • Akira Matsumoto


In this chapter, potentiometric detection methods for microbial DNA involved recognition events by use of genetic field effect devices will be described. Fundamental principles of field effect devices and the technical background with their ongoing applications in the field of bio-sensor technologies, termed bio-FET, will be first introduced. Then concept of genetic field effect transistor will be described with emphasis on their fabrication, characteristics, and recent applications to microbial Single Nucleotide Polymorphysms (SNPs) Analysis as well as DNA sequencing. By comparing to other conventional methods, technical significance and future perspective of the genetic field effect transistor will also be discussed in detail.


Oligonucleotide Probe Field Effect Transistor Gate Insulator Single Nucleotide Polymorphism Genotyping Extension Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beattie WG, Meng L, Turner SL, Varma RS, Dao DD and Beattie KL (1995) Hybridization of DNA targets to glass-tethered oligonucleotide probes. Mol. Biotechnol. 4:213–225CrossRefGoogle Scholar
  2. Boger DL, Fink BE, Brunette SR, Tse WC and Hedrick MP (2001) A simple, high-resolution method for establishing DNA binding affinity and sequence selectivity. J. Am. Chem. Soc. 123:5878–5891CrossRefGoogle Scholar
  3. Chee M, Yang R, Hubbell E, Berno A, Huang XC, Stern D, Winkler J, Lockhart DJ, Morris M. S and Fodor SPA (1996) Accessing genetic information with high-density DNA arrays. Science 274:610–614CrossRefGoogle Scholar
  4. Chrisey LA, Lee GU and O’Ferrall CE (1996) Covalent attachment of synthetic DNA to self-assembled monolayer films. Nucl. Acids. Res. 24:3031–3039CrossRefGoogle Scholar
  5. Cooper MA, Dultsev FN, Minson T, Ostanin VP, Abell C and Klenerman D (2001) Direct and sensitive detection of a human virus by rupture event scanning. Nat. Biotechnol. 19:833–837CrossRefGoogle Scholar
  6. Crumbliss AL, Perine SC, Stonehuerner J, Tubergen KR, Zuhao J, Henkens RW and O’Daly JP (1992) Colloidal gold as a biocompatible immobilization matrix suitable for the fabrication of enzyme electrodes by electrodeposition. Biotechnol. Bioeng. 40:483–490CrossRefGoogle Scholar
  7. Dengler WA, Schulte J, Berger DP, Mertelsmann R and Fiebig HH (1995) Development of a propidium iodide fluorescence assay for proliferation and cytotoxicity assays. Anticancer Drugs 6:522–532CrossRefGoogle Scholar
  8. Disley DM, Cullen DC, You H-X and Lowe CR (1998) Covalent coupling of immunoglobulin G to self-assembled monolayers as a method for immobilizing the interfacial-recognition layer of a surface plasmon resonance immunosensor. Biosens, Bioelectron. 13:1213–1225CrossRefGoogle Scholar
  9. Duschl C, Sevin-Landais AF and Vogel H (1996) Surface engineering: optimization of antigen presentation in self-assembled monolayers. Biophys. J. 70:1985–1995Google Scholar
  10. Eggers M, Hogan M, Reich RK, Lamture J, Ehrlich D, Hollis M, Kosicki B, Powdrill T, Beattie K and Smith S (1994) A microchip for quantitative detection of molecules utilizing luminescent and radioisotope reporter groups. Biotechniques 17:516–525Google Scholar
  11. Fritz J, Cooper EB, Gaudet S, Sorger PK and Manails SR (2002) Proceedings of the. National Academy of Science, USA 99:14142–14146CrossRefGoogle Scholar
  12. Gilles PN, Wu DJ, Foster CB, Dillon PJ and Chanock SJ (1999) Single nucleotide polymorphic discrimination by an electronic dot blot assay on semiconductor microchip. Nat. Biotechnol. 17:365–370CrossRefGoogle Scholar
  13. Guo Z, Guilfoyle RA, Thiel AJ, Wang R and Smith LM (1994) Direct fluorescence analysis of genetic polymorphisms by hybridization with oligonucleotide arrays on glass supports. Nucleic Acids Res. 22:5456–5465CrossRefGoogle Scholar
  14. Guo Z, Gatterman MS, Hood L, Hansen JA and Petersdorf EW (2001) Oligonucleotide arrays for high-throughput SNPs detection in the MHC class I genes: HLA-B as a model system. Genome Res. 12:447–457Google Scholar
  15. Haff L and Smirnov IP (1997) Single-nucleotide polymorphism identification assays using a thermostable DNA polymerase and delayed extraction MALDI-TOF mass spectrometry. Genome Res. 7:378:388Google Scholar
  16. Hiller M, Kranz C, Huber J, Baeuerle P and Schuhmann W (1996) Amperometric biosensors produced by immobilization of redox enzymes at polythiophene-modified electrode surfaces. Adv. Mater 8:219–222CrossRefGoogle Scholar
  17. Howell WM, Jobs M, Gyllensten U and Brookes AJ (1999) Dynamic allele-specific hybridization. Nat. Biotechnol. 17:87–88CrossRefGoogle Scholar
  18. Huang E, Satjapipat M, Han S and Zhou F (2001) Surface structure and coverage of an oligonucleotide probe tethered onto a gold substrate and its hybridization efficiency for a polynucleotide target. Langmuir 17:1215–1224CrossRefGoogle Scholar
  19. Jobs M, Howell WM, Stromqvist L, Mayr T and Brookes AJ (2003) DASH-2: Flexible, Low-Cost, and High-Throughput SNP Genotyping by Dynamic Allele-Specific Hybridization on Membrane Arrays. Genome Res. 13:916–924CrossRefGoogle Scholar
  20. Kajiyama T, Miyahara Y, Kricka LJ, Wilding P, Graves DJ, Surrey S and Fortina P (2003) Genotyping on a thermal gradient DNA chip. Genome Res. 13:467–475CrossRefGoogle Scholar
  21. Kallury KMR, Krull UJ and Thompson M (1998) X-ray photoelectron spectroscopy of silica surfaces treated with polyfunctional silanes. Anl. Chem. 60:169–172CrossRefGoogle Scholar
  22. Kim D-S, Jeong Y-T, Park H-J, Shin J-K, Choi P, Lee J-H and Lim G (2004) An FET-type charge sensor for highly sensitive detection of DNA sequence. Biosensors and Bioelectronics 20:69–74CrossRefGoogle Scholar
  23. Kumar A, Larsson O, Parodi D and Liang Z (2000) Silanized nucleic acids: a general platform for DNA immobilization. Nucl. Acids. Res. 28:e71CrossRefGoogle Scholar
  24. Landegren U, Kaiser R, Sanders J and Hood L (1988) A ligase-mediated detection technique. Science 241:1077–1080CrossRefGoogle Scholar
  25. Landegren U, Nilsson M and Kwok P-Y (1998) Reading bits of genetic information: methods for single-nucleotide polymorphism analysis. Genome Res. 8:769–776Google Scholar
  26. Livak KJ, Marmaro J and Todd JA (1995) Towards full automated genome-wide polymorphism screening. Nat. Genet. 9:341–342CrossRefGoogle Scholar
  27. Lockhart DJ, Dong H, Byrne MC, Follettie MT, Gallo MV, Chee MS, Mittmann M, Wang C, Kobayashi M, Horton H and Brown EL (1996) Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat. Biotechnol. 14:1675–1680CrossRefGoogle Scholar
  28. Lu B, Xie J, Lu C, Wu C and Wei Y (1995) Oriented immobilization of Fab’ fragments on silica surfaces. Anal. Chem. 67:83–87CrossRefGoogle Scholar
  29. Manz A, Miyahara Y, Miura J, Watanabe Y, Miyagi H and Sato K (1990) Design of an open-tubular column liquid chromatograph using silicon chip technology. Sensors and Actuators B 1:249–255CrossRefGoogle Scholar
  30. Miyahara Y, Moriizumi T and Ichimura K (1985) Integrated enzyme FETs for simultaneous detections of urea and glucose. Sensors and Actuators 7:1–10CrossRefGoogle Scholar
  31. Miyahara Y, Tsukada K and Miyagi H (1988) Field-effect transistor using a solid electrolyte as a new oxygen sensor. J. Appl. Phys. 63:2431–2434CrossRefGoogle Scholar
  32. Miyahara Y, Tsukada K, Miyagi H and Simon W (1991) Urea sensor based on an ammonium ion-sensitive field effect transistor. Sensors and Actuators B 3:287–293CrossRefGoogle Scholar
  33. Miyahara Y and Simon W (1991) Comparative studies between ion-selective field effect transistors and ion-selective electrodes with polymeric membranes. Electroanalysis 3:287–291CrossRefGoogle Scholar
  34. Miyahara Y, Tsukada K, Shibata Y and Watanabe Y (1994) Long-life planar oxygen sensor. Sensors and Actuators B 20:89–94CrossRefGoogle Scholar
  35. Mrksich M, Chen CS, Xia Y, Dike LE, Ingber DE and Whitesides GM (1996) Controlling cell attachment on contoured surfaces with self-assembled monolayers of alkanethiolates on gold. Proceedings of the National Academy of Science 93:10775–10778CrossRefGoogle Scholar
  36. Nakajima H, Esashi M and Matsuo T (1980) The pH-response of organic gate ISFETs and the influence of macro-molecule adsorption. Nippon Kagaku Kaishi No. 10:1499–1508Google Scholar
  37. Orita M, Iwahana H, Kanazawa H, Hayashi K and Sekiya T (1989) Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proceedings of the National Academy of Science 86:2766–2770CrossRefGoogle Scholar
  38. Parker M, Patel N, Davies MC, Roberts CJ, Tendler SJB and Williams PM (1996) A novel organic solvent-based coupling method for the preparation of covalently immobilized proteins on gold. Protein Sci. 5:2329–2332Google Scholar
  39. Parsons BL and Heflich RH (1997) Genotypic selection methods for the direct analysis of point mutations. Mutat. Res. 387:97–121CrossRefGoogle Scholar
  40. Pastinen T, Partanen J and Syvanen AC (1996) Multiplex fluorescent, solid-phase minisequencing for efficient screening of DNA sequence variation. Clin. Chem. 42:1391–1397Google Scholar
  41. Pastinen T, Kurg A, Metspalu A, Peltonen L and Syvanen AC (1997) A specific tool for DNA analysis and diagnostics on oligonucleotide assays. Genome Res. 7:606–614Google Scholar
  42. Pastinen T, Raitio M, Lindroos K, Tainola P, Peltonen L and Syvanen A-C (2000) A system for specific, high-throughput genotyping by allele-specific primer extension on microarray. Genome Res. 10:1031–1042CrossRefGoogle Scholar
  43. Pirrung MC (2002) How to make a DNA chip. Angew. Chem. Int. Ed. 41:1276–1289CrossRefGoogle Scholar
  44. Pouthas F, Gentil,C, Cote D and Bockelmann U (2004) DNA detection on transistor arrays following mutation-specific enzymatic amplification. Appl. Phys. Let. 84:1594–1596CrossRefGoogle Scholar
  45. Qian J, Liu Y, Liu H, Yu T and Deng J (1997) Immobilization of horseradish peroxidase with a regenerated silk fibroin membrane and its application to a tetrathiafulvalene-mediating H2O2 sensor. Biosens, Bioelectron 12:1213–1218CrossRefGoogle Scholar
  46. Rickert J, Weiss T and Gopel W (1996) Self-assembled monolayers for chemical sensors: molecular recognition by immobilized supramolecular structure. Sens. Actuators B 31:45–50CrossRefGoogle Scholar
  47. Ronagi M, Uhlen M and Nyren P (1998) A sequence method based on real-time pyrophosphate detection. Science 281:363–365CrossRefGoogle Scholar
  48. Rye HS, Yue S, Quesada MA, Haugland RP, Mathies RA and Glazer AN (1993) Picogram detection of stable dye-DNA intercalation complexes with two-color laser-excited confocal fluorescence gel scanner. Methods Enzymol. 217:414–431CrossRefGoogle Scholar
  49. Saiki RK, Walsh RS, Levenson CH and Erlich HA (1989) Genetic analysis of amplified DNA with immobilized sequence-specific oligonucleotide probes. Proc. Nat. Acad. Sci. USA 86:6230–6234CrossRefGoogle Scholar
  50. Sakahara H and Saga T (1999) Avidin–biotin system for delivery of diagnostic agents. Adv. Drug Delivery Rev. 37:89–101CrossRefGoogle Scholar
  51. Sakata T and Miyahara Y (2005a) Detection of DNA recognition events using multi-well field effect devices. Biosensors and Bioelectronics 21:827–832CrossRefGoogle Scholar
  52. Sakata T and Miyahara Y (2005b) Potentiometric detection of single nucleotide polymorphism by using a genetic field-effect transistor. ChemBioChem 6:703–710CrossRefGoogle Scholar
  53. Sakata T and Miyahara Y (2006) DNA sequencing based on intrinsic molecular charges. Angewandte Chemie International Edition 45:2225–2228CrossRefGoogle Scholar
  54. Sauer S, Lechner D, Berlin K, Lehrach H, Escary J-L, Fox N and Gut IG (2000) A novel procedure for efficient genotyping of single nucleotide polymorphisms. Nucl. Acids. Res. 28:e13CrossRefGoogle Scholar
  55. Schene M, Shalon D, Davis RW and Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470CrossRefGoogle Scholar
  56. Shlyakhtenko LS, Gall AA, Weimer JJ, Hawn DD and Lyubchenko YL (1999) Atomic force microscopy imaging of DNA covalently immobilized on a functionalized mica substrate. Biophys. J. 77:568–576CrossRefGoogle Scholar
  57. Silberzan P, Leger L, Ausserre D and Bennattar JJ (1991) Silanation of silica surfaces. A new method of constructing pure or mixed monolayers. Langmuir 7:1647–1651CrossRefGoogle Scholar
  58. Sirkar K and Pishko MV (1998) Amperometric biosensors based on oxidoreductases immobilized in photopolymerized poly(ethylene glycol) redox polymer hydrogels. Anal. Chem. 70:2888–2894CrossRefGoogle Scholar
  59. Souteyrand E, Cloarec JP, Martin JR, Wilson C, Lawrence I, Mikkelsen S and Lawrence MF (1997) Direct detection of the hybridization of synthetic homo-oligomer DNA sequences by field effect. J. Phys. Chem. B 101:2980–2985CrossRefGoogle Scholar
  60. Sriram M, van der Marel GA, Roelen HLPF, van Boom JH and Wang AH-J (1992) Structural consequences of a carcinogenic alkylation lesion on DNA: effect of O6-ethylguanine on the molecular structure of the d(CGC[e6G]AATTCGCG) -netropsin complex. Biochemistry 31:11823–11834CrossRefGoogle Scholar
  61. Steel AB, Herne TM and Tarlov MJ (1998) Electrochemical quantitation of DNA immobilized on gold. Anal. Chem. 70:4670–4677CrossRefGoogle Scholar
  62. Strother T, Cai W, Zhao X, Hamers RJ and Smith LM (2000) Synthesis and characterization of DNA-modified silicon (111) surfaces. J. Am. Chem. Soc. 122:1205–1209CrossRefGoogle Scholar
  63. Strother T, Hamers RJ and Smith LM (2000) Covalent attachment of oligodeoxyribonucleotides to amine-modified Si (001) surfaces. Nucleic Acids Res. 28:3535–3541CrossRefGoogle Scholar
  64. Syvanen A-C (2001) Accessing genetic variation: genotyping single nucleotide polymorphisms. Nat. Rev. Genet. 2:930–942CrossRefGoogle Scholar
  65. Thiel AJ, Frutos AG, Jordan CE, Corn RM and Smith LM (1997) In situ surface plasmon resonance imaging detection of DNA hybridization to oligonucleotide arrays on gold surfaces. Anal. Chem. 69:4948–4956CrossRefGoogle Scholar
  66. Tiefenauer L and Ros R (2002) Biointerface analysis on a molecular level new tools for biosensor research. Colloids and Surfaces B 23: 95–114CrossRefGoogle Scholar
  67. Tsukada K, Miyahara Y, Shibata Y and Miyagi H (1990) An integrated chemical sensor with multiple ion and gas sensors. Sensors and Actuators B 2:291–295CrossRefGoogle Scholar
  68. Tyagi S, Bratu DP and Kramer FR (1998) Multicolor molecular beacons for allele discrimination. Nat. Biotechnol. 16:49–53CrossRefGoogle Scholar
  69. Tyagi S, Marras SAE and Kramer FR (2000) Wavelength-shifting molecular beacons. Nat. Biotechnol. 18:1191–1196CrossRefGoogle Scholar
  70. Uslu F, Ingebrandt S, Mayer D, Böcker-Meffert S, Odenthal M and Offenhäusser A (2004) Labelfree fully electronic nucleic acid detection system based on a field-effect transistor device. Biosensors and Bioelectronics 19:1723–1731CrossRefGoogle Scholar
  71. Vandenberg E, Elwing H, Askendal A and Lundstrom I (1991) Structure of 3-aminopropyl triethoxy silane on silicon oxide. J. Colloids Interface Sci. 147:103–118CrossRefGoogle Scholar
  72. Wikstrom P, Mandenium CF and Larsson P (1988) Phase Silylation, a rapid method for preparation of high-performance liquid chromatography supports. J. Chromatogr. 455:105–117CrossRefGoogle Scholar
  73. Wilson WD, Tanious FA, Barton HJ, Strekowski L and Boykin DW (1989) Binding of 4’,6-diamidino-2-phenylindole (DAPI) to GC and mixed sequences in DNA: intercalation of a classical groove-binding molecule. J. Am. Chem. Soc. 111:5008–5010CrossRefGoogle Scholar
  74. Yon-Hin B, Smolander M, Crompton T and Lowe CR (1993) Covalent electropolymerization of glucose oxidase in polypyrrole. Evaluation of methods of pyrrole attachment to glucose oxidase on the performance of electropolymerized glucose sensors. Anal. Chem. 65: 2067–2071CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Yuji Miyahara
    • 1
    • 2
  • Toshiya Sakata
    • 2
  • Akira Matsumoto
    • 2
  1. 1.Biomaterials Center National Institute for Materials Science 1-1 NamikiJapan
  2. 2.Department of Materials EngineeringGraduate School of Engineering The University of TokyoTokyoJapan

Personalised recommendations