Amperometric Biosensor for Pathogenic Bacteria Detection

  • Ilaria Palchetti
  • Marco Mascini


Biosensor technology has the potential to speed the detection of food pathogen and to increase specificity and sensitivity of the analysis. Electrochemical biosensors have some advantages over other analytical transducing systems, such as the possibility to operate in turbid media, comparable instrumental sensitivity, and possibility of miniaturisation. Basically electrochemical biosensor can be based on potentiometric, amperometric or impedimetric/conductimetric transducers. In this chapter, amperometric transducers will be described in detail. In particular amperometric biosensors for food pathogen will be reviewed as microbial metabolism-based, antibody-based (immunosensor), and DNA-based biosensor.


Electrochemical Biosensor Mycobacterium Smegmatis Amperometric Biosensor Immunomagnetic Separation Bacterial Detection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdel-Hamid I, Ivnitski D, Atanasov P, Wilkins E (1999) Flowthrough immunofiltration assay system for rapid detection of E. coli O157: H7. Biosensors and Bioelectronics 14:309–316CrossRefGoogle Scholar
  2. Abdel-Hamid I, Ivnitski D, Atanasov P, Wilkins E (1999) Highly sensitive flow-injection immunoassay system for rapid detection of bacteria. Analytica Chimica Acta 399:99–108CrossRefGoogle Scholar
  3. Alocilja EC, Radke SM (2003) Market analysis of biosensors for food safety. Biosensor and Bioelectronics 18:841–846CrossRefGoogle Scholar
  4. Banati D (2003) The EU and candidate countries: How to cop with food safety policies? Food Control 14:89–93CrossRefGoogle Scholar
  5. Balaban N, Rasooly A (2002) Staphylococcal enterotoxins. Int. J. Food Microbiol. 61:1–10CrossRefGoogle Scholar
  6. Brewster JD, Gehring AG, Mazenko RS, Van Houten LJ, Crawford CJ (1996) Immunoelectrochemical assays for bacteria: use of epifluorescence microscopy in development of an assay for salmonella. Analytical Chemistry 68:4153–4159CrossRefGoogle Scholar
  7. Brewster JD, Mazenko RS (1998) Filtration capture and immunoelectrochemical detection for rapid assay of Escherichia coli O157:H7. Journal of Immunological methods 211:1–18CrossRefGoogle Scholar
  8. Call DR, Brockman FJ, Chandler DP (2001) Detecting and genotyping E.Coli 0157:H7 using multiplexed PCR and nuclei acid microarrays. J. Food Microbiol. 67:71–80CrossRefGoogle Scholar
  9. De Boer E, Beumer RR (1999) Methodology for detection and typing of foodborne microorganisms. Int. J. Food Microbiol. 1-2:119–130CrossRefGoogle Scholar
  10. Del Giallo ML, Lucarelli F, Cosulich E, Pistarino E, Santamaria B, Marrazza G, Mascini M (2005) Steric factors controlling the surface hybridization of PCR amplified sequences. Anal. Chem. 77 (19), 6324–6330CrossRefGoogle Scholar
  11. Elsholz B, Wo R, Blohm L, Albers J, Feucht H, Grunwald T, Jurgen B, Schweder T, Hintsche Rainer (2006) Automated Detection and Quantitation of Bacterial RNA by Using Electrical Microarrays Anal. Chem. 78:4794–4802Google Scholar
  12. Farabullini F, Lucarelli F, Palchetti I, Marrazza G, Mascini M (2007) Disposable Electrochemical Genosensor for the Simulataneous Analysis of Different Bacterial Food Contaminants. Biosensors and Bioelectronics 22:1544–1549CrossRefGoogle Scholar
  13. Invitski D, Abdel-Hamid I, Atanasov P, Wilkins E (1999) Biosensors for detection of pathogenic bacteria. Biosens. Bioelectron. 14:599–624CrossRefGoogle Scholar
  14. Invitski D, Abdel-Hamid I, Atanasov P, Wilkins E, Striker S (2000) Application of Electrochemical Biosensors for Detection of Food Pathogenic Bacteria. Electroanalysis 12:5 317–325Google Scholar
  15. Jaradat ZW, Schutze GE, Bhunia AK (2002) Genetic homogeneity among Listeria monocytogens strains from infected patients and meat products from two geographic locations determined by phenotyping, ribotyping and PCR analysis of virulane genes. Int. J. Food Microbiol. 76:1–10CrossRefGoogle Scholar
  16. Kerman K, Kobayashi M, Tamiya E (2004) Recent trends in electrochemical DNA biosensor technology. Meas. Sci. Technol. 15:R1–R11CrossRefGoogle Scholar
  17. Leonard P, Hearty S, Brennan J, Dunne L, Quinn J, Chakraborty T, O’Kennedy R (2003) Advances in biosensors for detection of pathogens in food and water. Enzyme Microb. Tech. 32 (1-2):3–13CrossRefGoogle Scholar
  18. Lim DV (2003) Detection of Microorganisms and Toxins with Evanescent Wave Fiber-Optic Biosensors. Proceedings of the IEEE 91 (6):902–907CrossRefGoogle Scholar
  19. Lucarelli F, Marrazza G, Turner APF, Mascini M (2004) Carbon and gold electrodes as electrochemical transducers for DNA hybridisation sensors. Biosens. Bioelectron. 19:515–530CrossRefGoogle Scholar
  20. Malorny B, Hoorfar J, Bunge C, Helmuth R (2003) Multicenter Validation of the analytical accuracy of salmonella PCR: towards an International Standard. Appl. Environ. Microbiol. 69 (1):290–296CrossRefGoogle Scholar
  21. Manzano M, Cocolin L, Astori G, Pipan C, Botta GA, Cantoni C, Comi G (1998) Development of a PCR microplate-capture hybridization method for simple, fast and sensitive detection of Salmonella serovars in food. Mol. Cell. Probes 12:227–234CrossRefGoogle Scholar
  22. Mittelmann AS, Ron EZ, Rishpon J (2002) Amperometric quantification of total coliforms and specific detection of Escherichia coli. Analytical Chemistry 74:903–907CrossRefGoogle Scholar
  23. Mulchandani P, Hangarter CM, Lei Y, Chen W, Mulchandani A (2005) Amperometric microbial biosensor for pnitrophenol using Moraxella sp.-modified carbon paste electrode. Biosens Bioelectron 21:523–527CrossRefGoogle Scholar
  24. Olsen JE (2000) DNA-based methods for detection of food-borne bacterial pathogens. Food Res. Int. 33:257–266CrossRefGoogle Scholar
  25. Palecek E (2002) Past, present and future of nucleic acids electrochemistry. Talanta 56:809–819CrossRefGoogle Scholar
  26. Palecek E, Fojta M (2001) Detecting DNA hybridisation and damage. Anal. Chem. 73:74A–83AGoogle Scholar
  27. Perez FG, Tryland I, Mascini M, Fiksdal L (2001) Rapid detection of Escherichia coli in water by a culture-based amperometric method. Analytica Chimica Acta 427:149–154CrossRefGoogle Scholar
  28. Perez FG, Mascini M, Tothill IE, Turner APF (1998) Immunomagnetic Separation with Mediated Flow Injection Analysis Amperometric Detection of Viable Escherichia coli O157. Anal Chem 70:2380CrossRefGoogle Scholar
  29. Perez FG, Mascini M, Tothill IE, Tuner APF (1998) Anal. Chem. 70:2380–2386Google Scholar
  30. Pividori MI, Merkoci A, Alegret S (2000) Electrochemical genosensor design: immobilisation of oligonucleotides onto transducer surfaces and detection methods. Biosens. Bioelectronics 15:291–303CrossRefGoogle Scholar
  31. Sergeev N, Volokhov D, Chizhikov V, Rasooly A (2004) Simultaneous analysis of multiple stapylococcal enterotoxin genes by an oligonucleotide microrrarray assay. J. Clin. Microbiol. 42:2134–2143CrossRefGoogle Scholar
  32. Serra B, Morales MD, Zhang J, Reviejo AJ, Hall EH, Pingarron JM (2005) In-a-Day Electrochemical Detection of Coliforms in Drinking Water Using a Tyrosinase Composite Biosensor. Anal. Chem. 77:8115–8121CrossRefGoogle Scholar
  33. Siragusa GR, Cutter CN, Dorsa WJ, Koohmaraie M (1995) J. Food Protect. 58:770–775Google Scholar
  34. Sippy N, Luxton R, Lewis RJ, Cowell DC (2003) Rapid electrochemical detection and identification of catalase positive micro-organisms. Biosensors and Bioelectronics 18:741–749CrossRefGoogle Scholar
  35. Suzuki H, Tamiya E, Karube I (1991) Electroanalysis, disposable amperometric CO2 sensor, employing bacteria, and a miniaturized oxygen electrode 3:53–57Google Scholar
  36. Togo AC, Collins WV, Leigh LJ, Pletschke BI (2007) Novel detection of Escherichia coli b-D-glucuronidase activity using a microbially-modified glassy carbon electrode and its potential for faecal pollution monitoring. Biotechnol Lett. 29:531–537CrossRefGoogle Scholar
  37. Wang J (2002) Electrochemical nucleic acid biosensors. Anal. Chim. Acta. 469:63–71CrossRefGoogle Scholar
  38. Yang M, McGovern ME, Thompson M (1997) Anal. Chim. Acta 346:259–275Google Scholar
  39. Yemini M, Yaron L, Yagil E, Rishpon J (2007) Specific electrochemical phage sensing for Bacillus cereus and Mycobacterium smegmatis. Bioelectrochemistry 70:180–184CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Ilaria Palchetti
    • 1
  • Marco Mascini
    • 1
  1. 1.Dipartimento di ChimicaUniversità di FirenzeItaly

Personalised recommendations