Porous and Planar Silicon Sensors

  • Charles R. Mace
  • Benjamin L. Miller


The development of novel sensors able to produce a response directly upon binding of a target biomolecular analyte remains a major area of research in materials science and analytical chemistry. As the primary “raw material” for the microelectronics industry, and because of its biocompatibility and optical properties, silicon has drawn considerable attention in this field. This chapter discusses the current state of efforts in our group and others to develop porous and planar sensors based on silicon. Porous silicon, so-called because of its complex three-dimensional network structure, provides a high internal binding surface and allows for observation of binding by changes in the reflectivity or luminescence spectra of single- or multi-layer devices. Planar silicon sensors, exemplified here by Arrayed Imaging Reflectometry (AIR), do not have the high surface area of porous silicon yet still respond with a high degree of sensitivity to the binding of analytes to the sensing surface. Examples are presented for the use of both types of sensors for the detection of DNA, proteins, and pathogenic bacteria.


Surface Plasmon Resonance Porous Silicon Surface Plasmon Resonance Imaging Mesoporous Silicon Macroporous Silicon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bain CD and Whitesides GM (1988) Molecular-level control over surface order in self-assembled monolayer films of thiols on gold. Science 240:62–63CrossRefGoogle Scholar
  2. Batey J and Tierney E (1986) Low-temperature deposition of high-quality silicon dioxide by plasma-enhanced chemical vapor deposition. J. Appl. Phys. 60:3136–3145CrossRefGoogle Scholar
  3. Beutin L, Strauch E, Zimmermann S, Kaulfuss S, Schaudinn C, Mönnel A and Gelderblom HR (2005) Genetical and functional investigation of fliC genes encoding flagellar serotype H4 in wildtype strains of Escherichia coli and in a laboratory E. coli K-12 strain expressing flagellar antigen type H48BMC Microbiol. 5:4–14Google Scholar
  4. Bikiaris DN, Vassilou A, Pavlidou E and Karayannidis GP (2005) Compatibilisation effect of PP-g-MA copolymer on iPP/SiO2 nanocomposites prepared by melt mixing. Eur. Polym. J. 41:1965–1978CrossRefGoogle Scholar
  5. Brynda E, Houska M, Brandenburg A and Wikerstål A (2002) Optical biosensors for real-time measurement of analytes in blood plasma. Biosens. Bioelectron. 17:665–675CrossRefGoogle Scholar
  6. Campbell GA and Mutharasan R (2005) Detection of pathogen Escherichia coli O157:H7 using self-excited PZT-glass microcantilevers. Biosens. Bioelectron. 21:462–473CrossRefGoogle Scholar
  7. Canham LT (1990) Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57:1046–1048Google Scholar
  8. Chan S and Fauchet PM (1999) Tunable, narrow, and directional luminescence from porous silicon light emitting devices. Appl. Phys. Lett., 75:274–276CrossRefGoogle Scholar
  9. Chan S, Fauchet PM, Li Y, Rothberg LJ and Miller BL (2000) Porous silicon microcavities for biosensing applications. Phys. Stat. Sol. A. 182:541–546CrossRefGoogle Scholar
  10. Chan S, Horner SR, Miller BL and Fauchet PM (2001) Identification of gram negative bacteria using nanoscale silicon microcavities. J. Am. Chem. Soc. 123:11797–11798CrossRefGoogle Scholar
  11. Chilkoti A, Tan PH and Stayton PS (1995) Site-directed mutagenesis studies of the high-affinity streptavidin-biotin complex: Contributions of tryptophan residues 79, 108, and 120. Proc. Natl. Acad. Soc. USA. 92:1754–1758CrossRefGoogle Scholar
  12. Deal BE and Grove AS (1965) General relationship for the thermal oxidation of silicon. J. Appl. Phys. 36:3770–3778CrossRefGoogle Scholar
  13. DeLouise LA and Miller BL (2004a) Quantitative assessment of enzyme immobilization capacity in porous silicon. Anal. Chem. 76:6915–6920CrossRefGoogle Scholar
  14. DeLouise LA and Miller BL (2004b) Trends in porous silicon biomedical devices: tuning microstructure and performance trade-offs in optical biosensors. Proc. SPIE. 5357:111–125CrossRefGoogle Scholar
  15. DeLouise LA and Miller BL (2005). Enzyme immobilization in porous silicon: quantitative analysis of the kinetic parameters for glutathione-S-transferases. Anal. Chem. 77:1950–1956CrossRefGoogle Scholar
  16. DeLouise LA, Fauchet PM, Miller BL and Pentland AP 2005. Hydrogel-supported optical-microcavity sensors. Adv. Mater. 17:2199–2203CrossRefGoogle Scholar
  17. DeLouise LA, Kou PM and Miller BL (2005) Cross-correlation of optical microcavity biosensor response with immobilized enzyme activity. Insights into biosensor sensitivity. Anal. Chem. 77:3222–3230Google Scholar
  18. DeVinney R, Puente JL, Gauthier A, Goosney D and Finlay BB (2001) Enterohaemorrhagic and enteropathogenic Escherichia coli use a different Tir-based mechanism for pedestal formation. Mol. Microbiol. 41:1445–1458CrossRefGoogle Scholar
  19. Diehl F, Grahlmann S, Beier M and Hoheisel JD (2001) Manufacturing DNA microarrays of high spot homogeneity and reduced background signal. Nucleic Acids Res. 29:e38CrossRefGoogle Scholar
  20. Du H, Strohsahl CM, Camera J, Krauss TD and Miller BL (2005) Sensitivity and specificity of metal surface-immobilized "molecular beacon" biosensors. J. Am. Chem. Soc. 127:7932–7940CrossRefGoogle Scholar
  21. Eteshola E and Leckband D (2001) Development and characterization of an ELISA assay in PDMS microfluidic channels. Sens. Actuators B. 72:129–133CrossRefGoogle Scholar
  22. Gao T, Lu J and Rothberg LJ (2006) Biomolecular sensing using near-null single wavelength arrayed imaging reflectometry. Anal. Chem. 78:6622–6627CrossRefGoogle Scholar
  23. Gronewold TMA, Glass S, Quandt E and Famulok M (2005) Monitoring complex formation in the blood-coagulation cascade using aptamer-coated SAW sensors. Biosens. Bioelectron. 20:2044–2052CrossRefGoogle Scholar
  24. Hecht E (2002) Optics, 4th ed. Addison Wesley, San FranciscoGoogle Scholar
  25. Hergenrother PJ, Depew KM and Schreiber SL (2000). Small-molecule microarrays: covalent attachment and screening of alcohol-containing small molecules on glass slides. J. Am. Chem. Soc. 122: 7849–7850CrossRefGoogle Scholar
  26. Homola J, Yee SS and Gauglitz G (1999) Surface plasmon resonance sensors: review. Sens. Actuators B. 54:3–15CrossRefGoogle Scholar
  27. Hooper LV and Gordon JI (2001) Glycans as legislators of host–microbial interactions: spanning the spectrum from symbiosis to pathogenicity. Glycobiology. 11:1R-10RCrossRefGoogle Scholar
  28. Horner SR, Mace CR, Rothberg LJ and Miller BL (2006) A proteomic biosensor for enteropathogenic E. coli. Biosens. Bioelectron. 21:1659–1663CrossRefGoogle Scholar
  29. Huang Y, Duan X, Wei Q and Lieber CM (2001) Directed assembly of one-dimensional nanostructures into functional networks. Science. 291: 630–633.CrossRefGoogle Scholar
  30. Hubbard RD, Horner SR and Miller BL (2001) Highly substituted ter-cyclopentanes as receptors for lipid A. J. Am. Chem. Soc. 123:5810–5811CrossRefGoogle Scholar
  31. Huc I and Lehn J-M (1997) Virtual combinatorial libraries: Dynamic generation of molecular and supramolecular diversity by self-assembly. Proc. Natl. Acad. Sci. USA. 94:2106–2110CrossRefGoogle Scholar
  32. Hueck CJ (1998) Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev. 62:379–433Google Scholar
  33. Janshoff A, Dancil K-PS, Steinem C, Greiner DP, Lin VS-Y, Gurtner C, Motesharei K, Sailor MJ and Ghadiri MR (1998) Macroporous p-type silicon Fabry-Perot layers. Fabrication, characterization, and applications in biosensing. J. Am. Chem. Soc. 120:12108–12116CrossRefGoogle Scholar
  34. Jeong JH and Park TG (2001) Novel polymer-DNA hybrid polymeric micelles composed of hydrophobic poly(D,L-lactic-co-glycolic acid) and hydrophilic oligonucleotides. Bioconjugate Chem. 12:917–923CrossRefGoogle Scholar
  35. Jin G, Tengvall P, Lundström I and Arwin H (1995) A biosensor concept based on imaging ellipsometry for visualization of biomolecular interactions. Anal. Biochem. 232:69–72CrossRefGoogle Scholar
  36. Johnston KS, Yee SS and Booksh KS (1997) Calibration of surface plasmon resonance refractometers using locally weighted parametric regression. Anal. Chem. 69:1844–1851CrossRefGoogle Scholar
  37. Knutton S, Adu-Bobie J, Bain C, Phillips AD, Dougan G and Frankel G (1997) Down regulation of intimin expression during attaching and effacing enteropathogenic Escherichia coli adhesion. Infect. Immun. 65:1644–1652Google Scholar
  38. Li J, Tan W, Wang K, Xiao D, Yang X, He X and Tang Z (2001) Ultrasensitive optical DNA biosensor based on surface immobilization of molecular beacon by a bridge structure. Anal. Sci. 17:1149–1153CrossRefGoogle Scholar
  39. Liedberg B, Nylander C and Lundström I (1983) Surface plasmon resonance for gas detection and biosensing. Sens. Actuators. 4:299–304.CrossRefGoogle Scholar
  40. Lin VS-Y, Motesharei K, Dancil K-PS, Sailor MJ and Ghadiri MR (1997) A Porous silicon-based optical interferometric biosensor. Science. 278:840–843CrossRefGoogle Scholar
  41. Ljungberg K, Söderbörg A and Böcklund Y (1993) Spontaneous bonding of hydrophobic silicon surfaces. Appl. Phys. Lett. 62:1362–1364CrossRefGoogle Scholar
  42. Lu J, Strohsahl CM, Miller BL and Rothberg LJ (2004) Reflective interferometric detection of label-free oligonucleotides. Anal. Chem. 76:4416–4420CrossRefGoogle Scholar
  43. Luo Y, Frey EA, Pfuetzner RA, Creagh AL, Knoechel DG, Haynes CA, Finlay BB and Strynadka NCJ (2000) Crystal structure of enteropathogenic Escherichia coli intimin–receptor complex. Nature. 405:1073–1077CrossRefGoogle Scholar
  44. Macbeath G and Schreiber SL (2000) Printing proteins as microarrays for high-throughput function determination. Science. 289:1760–1763Google Scholar
  45. Mace CR, Striemer CC and Miller BL (2006) Theoretical and experimental analysis of arrayed imaging reflectometry as a sensitive proteomics technique. Anal. Chem. 78:5578–5583CrossRefGoogle Scholar
  46. Martinez JS, Grace WK, Grace KM, Hartman N and Swanson BI (2005) Pathogen detection using single mode planar optical waveguides. J. Mater. Chem. 15:4639–4647CrossRefGoogle Scholar
  47. McDaniel TK, Jarvis KG, Donnenberg MS and Kaper JB (1995) A genetic locus of enterocyte effacement conserved among diverse enterobacterial pathogens. Proc. Natl. Acad. Sci. USA. 92:1664–1668CrossRefGoogle Scholar
  48. Mielenz KD, Nefflen KF, Rowley WRC, Wilson DC and Engelhard E Reproducibility of helium-neon laser wavelengths at 633 nm. Appl. Opt. 7:289–294Google Scholar
  49. Morita M, Ohmi T, Hasegawa E, Kawakami M and Ohwada M (1990) Growth of native oxide on a silicon surface. J. Appl. Phys. 68:1272–1281Google Scholar
  50. Mrksich M and Whitesides GM (1996) Using self-assembled monolayers to understand the interactions of man-made surfaces with proteins and cells. Annu. Rev. Biophys. Biomol. Struct. 25:55–78CrossRefGoogle Scholar
  51. Muhammed-Tahir Z and Alocilja EC (2003) Fabrication of a disposable biosensor for Escherichia coli O157:H7 detection. IEEE Sensors Journal. 3:345–351CrossRefGoogle Scholar
  52. Nedelkov D and Nelson RW (2001) Analysis of native proteins from biological fluids by biomolecular interaction analysis mass spectrometry (BIA/MS): exploring the limit of detection, identification of non-specific binding and detection of multi-protein complexes. Biosens. Bioelectron. 16:1071–1078CrossRefGoogle Scholar
  53. Ouyang H, Christophersen M, Viard R, Miller BL and Fauchet PM (2005) Macroporous silicon microcavities for macromolecule detection. Adv. Funct. Mater. 15:1851–1859CrossRefGoogle Scholar
  54. Ouyang H, Striemer CC and Fauchet PM (2006) Quantitative analysis of the sensitivity of porous silicon optical biosensors. Appl. Phys. Lett. 88:163108–163110CrossRefGoogle Scholar
  55. Ouyang H, DeLouise LA, Miller BL and Fauchet PM (2007) Label-free quantitative detection of protein using macroporous silicon photonic bandgap biosensors. Anal. Chem. 79:1502–1506CrossRefGoogle Scholar
  56. Peterlinz KA and Georgiadis R (1996) In situ kinetics of self-assembly by surface plasmon resonance spectroscopy. Langmuir. 12:4731–4740CrossRefGoogle Scholar
  57. Phizicky E, Bastiaens PIH, Zhu H, Snyder M and Fields S (2003) Protein analysis on a proteomic scale. Nature. 422:208–215CrossRefGoogle Scholar
  58. Piehler J, Brecht A and Gauglitz G (1996) Affinity detection of low molecular weight analytes. Anal. Chem. 68:139–143CrossRefGoogle Scholar
  59. Ramachandran V, Brett K, Hornitzky MA, Dowton M, Bettelheim KA, Walker MJ and Djordjevic SP (2003) Distribution of intimin subtypes among Escherichia coli isolates from ruminant and human sources. J. Clin. Microbiol. 41:5022–5032CrossRefGoogle Scholar
  60. Ruan C, Yang L and Li Y (2002) Immunobiosensor chips for detection of Escherichia coli O157:H7 using electrochemical impedance spectroscopy. Anal. Chem. 74:4814–4820CrossRefGoogle Scholar
  61. Schmedake TA, Cunin F, Link JR and Sailor MJ (2002) Standoff detection of chemicals using porous silicon "smart dust" particles. Adv. Mater. 14:1270–1272CrossRefGoogle Scholar
  62. Schmitt H-M, Brecht A, Piehler J and Gauglitz G (1997) An integrated system for optical biomolecular interaction analysis. Biosens. Bioelectron. 12:809–816CrossRefGoogle Scholar
  63. Schubert W-D, Urbanke C, Ziehm T, Beier V, Machner MP, Domann E, Wehland J, Chakraborty T and Heinz DW (2002) Structure of internalin, a major invasion protein of Listeria monocytogenes, in complex with its human receptor E-cadherin. Cell. 111:825–836CrossRefGoogle Scholar
  64. Sinclair JF and O’Brien AD (2004) Intimin types a, b, and g bind to nucleolin with equivalent affinity but lower avidity than to the translocated intimin receptor. J. Biol. Chem. 279:33751–33758CrossRefGoogle Scholar
  65. Smith EA and Corn RM (2003) Surface plasmon resonance imaging as a tool to monitor biomolecular interactions in an array based format. Appl. Spectrosc. 57:320A-332ACrossRefGoogle Scholar
  66. Tabata A, Matsuno N, Suzuoki Y and Mizutani T (1996) Optical properties and structrue of SiO2 films prepared by ion-beam sputtering. Thin Solid Films. 289:84–89CrossRefGoogle Scholar
  67. Thibault G, Yudin J, Wong P, Tsitrin V, Sprangers R, Zhao R and Houry WA (2006) Specificity in substrate and cofactor recognition by the N-terminal domain of the chaperone ClpX. Proc. Natl. Acad. Sci. USA. 103:17724–17729CrossRefGoogle Scholar
  68. Thomas NA, Deng W, Puente JL, Frey EA, Yip CK, Strynadka NCJ and Finlay BB (2005) CesT is a multi-effector chaperone and recruitment factor required for the efficient type III secretion of both LEE- and non-LEE-encoded effectors of enteropathogenic Escherichia coli. Mol. Microbiol. 57:1762–1779CrossRefGoogle Scholar
  69. Touzé T, Hayward RD, Eswaran J, Leong JM and Koronakis V (2004) Self-association of EPEC intimin mediated by the β-barrel-containing anchor domain: a role in clustering of the Tir receptor. Mol. Microbiol. 51:73–87CrossRefGoogle Scholar
  70. Tripp CP and Hair ML (1993) Chemical attachment of chlorosilanes to silica: a two-step amine-promoted reaction. J. Phys. Chem. 97:5693–5698CrossRefGoogle Scholar
  71. Wang CC, Huang R-P, Sommer M, Lisoukov H, Huang R, Lin Y, Miller T and Burke J 2001. Array-based multiplexed screening and quantitation of human cytokines and chemokines. J. Proteome Res. 1:337–343CrossRefGoogle Scholar
  72. Wein GR (1999) A video technique for the quantitative analysis of the Poisson spot and other diffraction patterns. Am. J. Phys. 67:236–240CrossRefGoogle Scholar
  73. Young LS, Martin WJ, Meyer RD, Weinstein RJ and Anderson ET (1977) Gram-negative rod bacteremia: microbiologic, immunologic, and therapeutic considerations. Ann. Intern. Med. 86:456–471Google Scholar
  74. Zhong X, Reynolds R, Kidd JR, Kidd KK, Jenison R, Marlar RA and Ward DC (2003) Single-nucleotide polymorphism genotyping on optical thin-film biosensor chips. Proc. Natl. Acad. Sci. USA. 100:11559–11564Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Charles R. Mace
    • 1
  • Benjamin L. Miller
    • 1
  1. 1.University of RochesterRochesterUSA

Personalised recommendations