Innovative Technology Management System with Bibliometrics in the Context of Technology Intelligence

  • Hua Chang
  • Jürgen Gausemeier
  • Stephan Ihmels
  • Christoph Wenzelmann
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 6)

Technology has become a decisive factor for technology-intensive companies because of its significant influence on product development and process optimization. It is important to identify advantages or barriers of technologies, to compare them as well as to analyze the probability of being substituted. Therefore, scientific researchers and decision-makers in companies address their attention to technology intelligence, which is the sum of methods, processes, best practices, and tools used to identify business-sensitive information about technological developments or trends that can influence a company's competitive position.

The technology intelligence process strides across four levels: data, information, knowledge, and decisions. Data are symbols with no meaning. Information is data that has been given meaning by way of relational connection. Knowledge is the output of scouting, processing, and analyzing information. Decisions are made on the basis of knowledge [4]. Within the framework of technology intelligence, the main task is to procure accurate information about performances and developments of technologies, that is, to identify technology indicators. Technology indicators are those indexes or statistical data that allow direct characterization and evaluation of technologies throughout their whole lifecycles, for example, technological maturity, market segment, degree of innovation, or key player (country, company, ). Those technology indicators offer a direct view of technologies to decisionmakers.

People usually read documents one by one and collect the key information manually. But, the amount of information has dramatically increased in recent years. It is no longer possible to evaluate or characterize technologies by reading documents. Therefore, there is a demand for methods that support technology intelligence by systematically analyzing documents for the purpose of extraction of information relevant to technology indicators. One of the methods, which fulfils the requirements, is bilbiometrics.


Information Retrieval Market Segment Bibliometric Analysis Expert Consultation Technology Database 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ansoff HI (1965). Corporate Strategy. McGraw-Hill, New York.Google Scholar
  2. 2.
    Baeza-Yates R, Ribeiro-Neto B (1999). Modern Information Retrieval. ACM Press, New York.Google Scholar
  3. 3.
    Birkhofer H (1980). Analyse und Synthese der Funktionen technischer Produkte. Dissertation, Fakultät für Maschinenbau und Elektrotechnik. TU Braunschweig, VDI-Verlag, Düsseldorf.Google Scholar
  4. 4.
    Davis S, Botkin J (1995). The Monster Under the Bed—How Business is Mastering the Opportunity of Knowledge for Profit. Simon & Schuster, New York.Google Scholar
  5. 5.
    Eversheim W (Hrsg.) (2002). Innovationsmanagement für technische Produkte. Springer-Verlag, Berlin, Heidelberg.Google Scholar
  6. 6.
    Gausemeier J, Wenzelmann C (2005). Auf dem Weg zu den Produkten für die Märkte von morgen. In: Gausemeier, J. (Hrsg.): Vorausschau und Technologieplanung. 1. Symposium für Vorausschau und Technologieplanung Heinz Nixdorf Institut, 3–4 November 2005, Schloss Neuhardenberg, HNI-Verlagsschriftenreihe, Band 178, Paderborn.Google Scholar
  7. 7.
    Gausemeier J, Ebbesmeyer P, Kallmeyer F (2001). Produktinnovation—Strategische Planung und Entwicklung der Produkte von morgen. Carl Hanser Verlag, München, Wien.Google Scholar
  8. 8.
    Gausemeier J, Hahn A, Kespohl HD, Seifert L (2006). Vernetzte Produktentwicklung. Der erfolgreiche Weg zum Global Engineering Networking. Carl Hanser Verlag, München.Google Scholar
  9. 9.
    Gorraiz J (1992). Zitatenanalyse—Die unerträgliche Bedeutung der Zitate. In: Biblos. Jg. 41, H. 4, S.193–204.Google Scholar
  10. 10.
    Kopcsa A, Schiebel E (1995). Methodisch-theoretische Abhandlung über bibliometrische Methoden und ihre Anwendungsmöglichkeiten in der industriellen Forschung und Entwicklung. Endbericht zum Projekt Nr. 3437 im Auftrag des Bundesministeriums für Wissenschaft, Forschung und Kunst.Google Scholar
  11. 11.
    Kopcsa A, Schiebel E (1998). Ein bibliometrisches F & E-Monitoringsystem für Unternehmen. Endbericht zum Projekt S.61.3833 im Auftrag des Bundesministeriums für Wissenschaft und Verkehr GZ. 49.965/2-II/4/96.Google Scholar
  12. 12.
    Langlotz G (2000). Ein Beitrag zur Funktionsstrukturentwicklung innovativer Produkte. Dissertation, Institut für Rechneranwendung in Planung und Konstruktion RPK, Universität Karlsruhe, Shaker Verlag, Aachen.Google Scholar
  13. 13.
    Westkämper E, Balve P (2002). Technologiemanagement in produzierenden Unternehmen. In: Bullinger, H.-J.; Warnecke, H.-J.; Westkämper, E. (Hrsg.): Neue Organisationsformen im Unternehmen. Springer Verlag, Berlin.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Hua Chang
    • 1
  • Jürgen Gausemeier
    • 1
  • Stephan Ihmels
  • Christoph Wenzelmann
  1. 1.Heinz Nixdorf InstituteUniversity of PaderbornPaderbornGermany

Personalised recommendations