Skip to main content

Discrete-Time Model Representations for Biochemical Pathways

  • Chapter
Trends in Intelligent Systems and Computer Engineering

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 6))

Based on much experimentation, traditional biochemists and molecular biologists have developed many qualitative models and hypotheses for biochemical pathway study [7, 26, 28]. However, in order to evaluate the completeness and usefulness of a hypothesis, produce predictions for further testing, and better understand the interaction and dynamic of pathway components, qualitative models are no longer adequate. There has recently been a focus on a more quantitative approach in systems biology study. In the past decade, numerous approaches for quantitative modeling of biochemical pathway dynamics have been proposed (e.g., [1, 4, 15, 29, 30, 34, 36], among others).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anand RA, Douglas AL (2000). Bioengineering models of cell signaling. Annual Review of Biomedical. Engineering 2:31–53.

    Article  Google Scholar 

  2. Atkinson AC (1992). Optimum Experimental Designs. Oxford University Press, New York.

    MATH  Google Scholar 

  3. Bernard O (2001). Mass balance modelling of bioprocess, Lecture Notes, Summer School on Mathematical Control Theory, Trieste.

    Google Scholar 

  4. Cho K-H, Wolkenhauer O (2003). Analysis and modeling of signal transduction pathways in systems biology. Biochemical Society Transactions, 31(6):1503–1509.

    Article  Google Scholar 

  5. Cho K-H, Shin S-Y, Lee H-W, Wolkenhauer O (2003a). Investigations in the analysis and modelling of the TNFα mediated NF-κB signaling pathway. Genome Research, 13:2413–2422.

    Article  Google Scholar 

  6. Cho K-H, Shin S-Y, Kim H-W, Wolkenhauer O, McFerran B, Kolch W (2003b). Mathematical Modeling of the Influence of RKIP on the ERK Signaling Pathway. Computational Methods in Systems Biology (CMSB’03). Lecture Notes in Computer Science, 2602, Springer-Verlag, New York.

    Google Scholar 

  7. Eker S, Knapp M, Laderoute K, Lincoln P, Meseguer J, Sonmez K (2002). Pathway logic: Symbolic analysis of biological signaling. Pacific Symposium on Biocomputing, pp. 400–412.

    Google Scholar 

  8. Eldred MS, Giunta AA, van Bloemen Waanders BG, Wojtkiewicz SF, William WE, Alleva M (2002). DAKOTA, A multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis Version 3.0. Technical Report, Sandia National Labs, USA.

    Google Scholar 

  9. Esposito WR, Floudas CA (2002). Deterministic global optimization in isothermal reactor network synthesis. Journal of Global Optimization, 22:59–95.

    Article  MATH  MathSciNet  Google Scholar 

  10. Faller D, Klingmuller U, Timmer J (2003). Simulation methods for optimal experimental design in systems biology. Simulation, 79(12):717–725.

    Article  Google Scholar 

  11. Gadkar KG, Gunawan R, Doyle FJ (2005a). Iterative approach to model identification of biological networks. BMC Bioinformatics, 6:155.

    Article  Google Scholar 

  12. Gadkar KG, Varner J, Doyle FJ (2005b). Model identification of signal transduction networks from data using a state regulator problem. IEE Systems Biology, 2(1):17–30.

    Article  Google Scholar 

  13. Ihekwaba AEC, Broomhead DS, Grimley RL, Benson N, Kell DB (2004). Sensitivity analysis of parameters controlling oscillatory signalling in the NF-kB pathway: The roles of IKK and IkBα. IET Systems Biology, 1(1):93–103.

    Google Scholar 

  14. Isidori A (1995). Nonlinear Control Systems, 3rd edn, Springer, London.

    MATH  Google Scholar 

  15. Jeff H, David M, Farren I, James JC (2001). Computational studies of gene regulatory networks: In numero molecular biology. Nature Reviews Genetics, (2):268–279.

    Google Scholar 

  16. Katsuhiko O (1995). Discrete-time Control System, 2nd edn, Prentice-Hall, Upper Saddle River, NJ, pp. 312–515.

    Google Scholar 

  17. Kell DB, Knowles JD (2006). The role of modeling in systems biology. In Systems Modeling in Cellular Biology: From Concept to Nuts and Bolts, eds. Z. Szallasi, J. Stelling and V. Periwal, MIT Press, Cambridge, MA.

    Google Scholar 

  18. Kowalski K, Steeb W-H (1991). Nonlinear Dynamical Systems and Carleman Linearization, World Scientific, Singapore.

    MATH  Google Scholar 

  19. Kutalik Z, Cho K-H, Wolkenhauer O (2004). Optimal sampling time selection for parameter estimation in dynamic pathway modeling, Biosystems, 75(1–3):43–55.

    Article  Google Scholar 

  20. Li R, Henson MA, Kurtz MJ (2004). Selection of model parameters for off-line parameter estimation, IEEE Transactions on Control Systems Technology, 12(3):402–412.

    Article  Google Scholar 

  21. Mendes E, Letellier C (2004). Displacement in the parameter space versus spurious solution of discretization with large time step, Journal of Physics A: Mathematical and General (37):1203–1218.

    Article  MATH  MathSciNet  Google Scholar 

  22. Monaco S, Normand-Cyrot D (1985). On the sampling of a linear control system. In Proceedings of IEEE 24th Conference on Decision and Control, pp. 1457–1482.

    Google Scholar 

  23. Monaco S, Normand-Cyrot D (1990). A combinatorial approach to the nonlinear sampling problem. Lecture Notes in Control and Information Sciences, (114):788–797.

    Article  MathSciNet  Google Scholar 

  24. Mueller TG, Noykova N, Gyllenberg M, Timmer J (2002). Parameter identification in dynamical models of anaerobic wastewater treatment. Mathematical Biosciences (177–178):147–160.

    Article  Google Scholar 

  25. Peifer M, Timmer J (2007). Parameter estimation in ordinary differential equations for biochemical processes using the method of multiple shooting. IET Systems Biology, 1(2):78–88.

    Article  Google Scholar 

  26. Peleg M, Yeh I, Altman RB (2002). Modeling biological processes using workflow and Petri net models, Bioinformatics, 18(6):825–837.

    Article  Google Scholar 

  27. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992). Numerical Recipes in C: The Art of Scientific Computing, 2nd edn, Cambridge University Press, UK.

    Google Scholar 

  28. Regev A, Silverman W, Shapiro E (2001). Representation and simulation of biochemical processes using π-calculus process algebra. Pacific Symposium on Biocomputing, pp. 459–470.

    Google Scholar 

  29. Robert DP (1997). Development of kinetic models in the nonlinear world of molecular cell biology. Metabolism, 46:1489–1495.

    Article  Google Scholar 

  30. Robert DP, Tom M (2001). Kinetic modeling approaches to in vivo imaging. Nature Reviews Molecular Cell Biology, 2:898–907.

    Google Scholar 

  31. Sontag ED (2005). Molecular systems biology and control. European Journal of Control 11:1–40.

    Article  MathSciNet  Google Scholar 

  32. Timmer J, Muller TG, Swameye I, Sandra O, Klingmuller U (2004). Modeling the nonlinear dynamics of cellular signal transduction. International Journal of Bifurcation and Chaos, 14(6):2069–2079.

    Article  MATH  MathSciNet  Google Scholar 

  33. Tjoa IB, Biegler LT (1991). Simultaneous solution and optimization strategies for parameter estimation of differential-algebraic equation systems. Industrial and Engineering Chemistry Research, 30:376–385.

    Article  Google Scholar 

  34. Tyson JJ, Kathy C, Bela N (2001). Network dynamics and cell physiology. Nature Reviews Molecular Cell Biology, 2:908–916.

    Article  Google Scholar 

  35. van Domselaar B, Hemker PW (1975). Nonlinear parameter estimation in initial value problems. Technical Report NW 18/75, Mathematical Centre, Amsterdam.

    Google Scholar 

  36. Wolkenhauer O (2001). Systems biology: The reincarnation of systems theory applied in biology? Briefings in Bioinformatics, 2(3):258–270.

    Article  Google Scholar 

  37. Wylie CR, Barrett LC (1995). Advanced Engineering Mathematics. 6th edn, McGraw-Hill, New York.

    Google Scholar 

  38. Yao KZ, Shaw BM, Kou B, McAuley KB, Bacon DW (2003). Modeling ethylene/butene copolymerization with multi-site catalysts: Parameter estimability and experimental design. Polymer Reaction Engineering, 11:563–588.

    Article  Google Scholar 

  39. Yue H, Brown M, Kell DB, Knowles J, Wang H, Broomhead DS (2006). Insights into the behaviour of systems biology models from dynamic sensitivity and identifiability analysis: A case study of an NF-kB signalling pathway. Molecular BioSystems, 2(12):640–649.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

He, F., Yeung, L.F., Brown, M. (2008). Discrete-Time Model Representations for Biochemical Pathways. In: Castillo, O., Xu, L., Ao, SI. (eds) Trends in Intelligent Systems and Computer Engineering. Lecture Notes in Electrical Engineering, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-74935-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-74935-8_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-74934-1

  • Online ISBN: 978-0-387-74935-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics