Advertisement

Discrete-Time Model Representations for Biochemical Pathways

  • Fei He
  • Lam Fat Yeung
  • Martin Brown
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 6)

Based on much experimentation, traditional biochemists and molecular biologists have developed many qualitative models and hypotheses for biochemical pathway study [7, 26, 28]. However, in order to evaluate the completeness and usefulness of a hypothesis, produce predictions for further testing, and better understand the interaction and dynamic of pathway components, qualitative models are no longer adequate. There has recently been a focus on a more quantitative approach in systems biology study. In the past decade, numerous approaches for quantitative modeling of biochemical pathway dynamics have been proposed (e.g., [1, 4, 15, 29, 30, 34, 36], among others).

Keywords

Biochemical Pathway Kutta Method Nonlinear ODEs Linear ODEs System Biology Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anand RA, Douglas AL (2000). Bioengineering models of cell signaling. Annual Review of Biomedical. Engineering 2:31–53.CrossRefGoogle Scholar
  2. 2.
    Atkinson AC (1992). Optimum Experimental Designs. Oxford University Press, New York.zbMATHGoogle Scholar
  3. 3.
    Bernard O (2001). Mass balance modelling of bioprocess, Lecture Notes, Summer School on Mathematical Control Theory, Trieste.Google Scholar
  4. 4.
    Cho K-H, Wolkenhauer O (2003). Analysis and modeling of signal transduction pathways in systems biology. Biochemical Society Transactions, 31(6):1503–1509.CrossRefGoogle Scholar
  5. 5.
    Cho K-H, Shin S-Y, Lee H-W, Wolkenhauer O (2003a). Investigations in the analysis and modelling of the TNFα mediated NF-κB signaling pathway. Genome Research, 13:2413–2422.CrossRefGoogle Scholar
  6. 6.
    Cho K-H, Shin S-Y, Kim H-W, Wolkenhauer O, McFerran B, Kolch W (2003b). Mathematical Modeling of the Influence of RKIP on the ERK Signaling Pathway. Computational Methods in Systems Biology (CMSB’03). Lecture Notes in Computer Science, 2602, Springer-Verlag, New York.Google Scholar
  7. 7.
    Eker S, Knapp M, Laderoute K, Lincoln P, Meseguer J, Sonmez K (2002). Pathway logic: Symbolic analysis of biological signaling. Pacific Symposium on Biocomputing, pp. 400–412.Google Scholar
  8. 8.
    Eldred MS, Giunta AA, van Bloemen Waanders BG, Wojtkiewicz SF, William WE, Alleva M (2002). DAKOTA, A multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis Version 3.0. Technical Report, Sandia National Labs, USA.Google Scholar
  9. 9.
    Esposito WR, Floudas CA (2002). Deterministic global optimization in isothermal reactor network synthesis. Journal of Global Optimization, 22:59–95.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Faller D, Klingmuller U, Timmer J (2003). Simulation methods for optimal experimental design in systems biology. Simulation, 79(12):717–725.CrossRefGoogle Scholar
  11. 11.
    Gadkar KG, Gunawan R, Doyle FJ (2005a). Iterative approach to model identification of biological networks. BMC Bioinformatics, 6:155.CrossRefGoogle Scholar
  12. 12.
    Gadkar KG, Varner J, Doyle FJ (2005b). Model identification of signal transduction networks from data using a state regulator problem. IEE Systems Biology, 2(1):17–30.CrossRefGoogle Scholar
  13. 13.
    Ihekwaba AEC, Broomhead DS, Grimley RL, Benson N, Kell DB (2004). Sensitivity analysis of parameters controlling oscillatory signalling in the NF-kB pathway: The roles of IKK and IkBα. IET Systems Biology, 1(1):93–103.Google Scholar
  14. 14.
    Isidori A (1995). Nonlinear Control Systems, 3rd edn, Springer, London.zbMATHGoogle Scholar
  15. 15.
    Jeff H, David M, Farren I, James JC (2001). Computational studies of gene regulatory networks: In numero molecular biology. Nature Reviews Genetics, (2):268–279.Google Scholar
  16. 16.
    Katsuhiko O (1995). Discrete-time Control System, 2nd edn, Prentice-Hall, Upper Saddle River, NJ, pp. 312–515.Google Scholar
  17. 17.
    Kell DB, Knowles JD (2006). The role of modeling in systems biology. In Systems Modeling in Cellular Biology: From Concept to Nuts and Bolts, eds. Z. Szallasi, J. Stelling and V. Periwal, MIT Press, Cambridge, MA.Google Scholar
  18. 18.
    Kowalski K, Steeb W-H (1991). Nonlinear Dynamical Systems and Carleman Linearization, World Scientific, Singapore.zbMATHGoogle Scholar
  19. 19.
    Kutalik Z, Cho K-H, Wolkenhauer O (2004). Optimal sampling time selection for parameter estimation in dynamic pathway modeling, Biosystems, 75(1–3):43–55.CrossRefGoogle Scholar
  20. 20.
    Li R, Henson MA, Kurtz MJ (2004). Selection of model parameters for off-line parameter estimation, IEEE Transactions on Control Systems Technology, 12(3):402–412.CrossRefGoogle Scholar
  21. 21.
    Mendes E, Letellier C (2004). Displacement in the parameter space versus spurious solution of discretization with large time step, Journal of Physics A: Mathematical and General (37):1203–1218.zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Monaco S, Normand-Cyrot D (1985). On the sampling of a linear control system. In Proceedings of IEEE 24th Conference on Decision and Control, pp. 1457–1482.Google Scholar
  23. 23.
    Monaco S, Normand-Cyrot D (1990). A combinatorial approach to the nonlinear sampling problem. Lecture Notes in Control and Information Sciences, (114):788–797.CrossRefMathSciNetGoogle Scholar
  24. 24.
    Mueller TG, Noykova N, Gyllenberg M, Timmer J (2002). Parameter identification in dynamical models of anaerobic wastewater treatment. Mathematical Biosciences (177–178):147–160.CrossRefGoogle Scholar
  25. 25.
    Peifer M, Timmer J (2007). Parameter estimation in ordinary differential equations for biochemical processes using the method of multiple shooting. IET Systems Biology, 1(2):78–88.CrossRefGoogle Scholar
  26. 26.
    Peleg M, Yeh I, Altman RB (2002). Modeling biological processes using workflow and Petri net models, Bioinformatics, 18(6):825–837.CrossRefGoogle Scholar
  27. 27.
    Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992). Numerical Recipes in C: The Art of Scientific Computing, 2nd edn, Cambridge University Press, UK.Google Scholar
  28. 28.
    Regev A, Silverman W, Shapiro E (2001). Representation and simulation of biochemical processes using π-calculus process algebra. Pacific Symposium on Biocomputing, pp. 459–470.Google Scholar
  29. 29.
    Robert DP (1997). Development of kinetic models in the nonlinear world of molecular cell biology. Metabolism, 46:1489–1495.CrossRefGoogle Scholar
  30. 30.
    Robert DP, Tom M (2001). Kinetic modeling approaches to in vivo imaging. Nature Reviews Molecular Cell Biology, 2:898–907.Google Scholar
  31. 31.
    Sontag ED (2005). Molecular systems biology and control. European Journal of Control 11:1–40.CrossRefMathSciNetGoogle Scholar
  32. 32.
    Timmer J, Muller TG, Swameye I, Sandra O, Klingmuller U (2004). Modeling the nonlinear dynamics of cellular signal transduction. International Journal of Bifurcation and Chaos, 14(6):2069–2079.zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Tjoa IB, Biegler LT (1991). Simultaneous solution and optimization strategies for parameter estimation of differential-algebraic equation systems. Industrial and Engineering Chemistry Research, 30:376–385.CrossRefGoogle Scholar
  34. 34.
    Tyson JJ, Kathy C, Bela N (2001). Network dynamics and cell physiology. Nature Reviews Molecular Cell Biology, 2:908–916.CrossRefGoogle Scholar
  35. 35.
    van Domselaar B, Hemker PW (1975). Nonlinear parameter estimation in initial value problems. Technical Report NW 18/75, Mathematical Centre, Amsterdam.Google Scholar
  36. 36.
    Wolkenhauer O (2001). Systems biology: The reincarnation of systems theory applied in biology? Briefings in Bioinformatics, 2(3):258–270.CrossRefGoogle Scholar
  37. 37.
    Wylie CR, Barrett LC (1995). Advanced Engineering Mathematics. 6th edn, McGraw-Hill, New York.Google Scholar
  38. 38.
    Yao KZ, Shaw BM, Kou B, McAuley KB, Bacon DW (2003). Modeling ethylene/butene copolymerization with multi-site catalysts: Parameter estimability and experimental design. Polymer Reaction Engineering, 11:563–588.CrossRefGoogle Scholar
  39. 39.
    Yue H, Brown M, Kell DB, Knowles J, Wang H, Broomhead DS (2006). Insights into the behaviour of systems biology models from dynamic sensitivity and identifiability analysis: A case study of an NF-kB signalling pathway. Molecular BioSystems, 2(12):640–649.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Fei He
    • 1
    • 2
  • Lam Fat Yeung
    • 2
  • Martin Brown
    • 1
  1. 1.School of Electronic and Electrical EngineeringThe University of ManchesterManchesterUK
  2. 2.Department of Electronic EngineeringCity University of Hong KongHong Kong

Personalised recommendations