Advertisement

Measurement of Oxygenation at the Site of Stem Cell Therapy in a Murine Model of Myocardial Infarction

  • Mahmood Khan
  • Vijay Kumar Kutala
  • Sheik Wisel
  • Simi M. Chacko
  • M. Lakshmi Kuppusamy
  • Pawel Kwiatkowski
  • Periannan Kuppusamy
Part of the Advances In Experimental Medicine And Biology book series (AEMB, volume 614)

Abstract

We have developed a noninvasive EPR (electron paramagnetic resonance) oximetry, based on a new class of oxygen-sensing nano-particulate probe (LiNc-BuO), for simultaneous monitoring of stem-cell therapy and in situ oxygenation (partial pressure of oxygen, pO2) in a mouse model of acute myocardial infarction (AMI). AMI was induced by a permanent occlusion of left-anterior-descending (LAD) coronary artery. Skeletal myoblast (SM) cells were used for therapy. The oximetry probe was implanted in the midventricular region using a needle. Tissue histological studies after 3 weeks of implantation of the probe revealed significant fibrosis, which was solely due to the needle track and not due to the probe particles. The feasibility of long-term monitoring of pO2 was established in control (non-infarct) group of hearts (> 3 months; pO2=15.0±1.2 mmHg,). A mixture of the probe with/without SM cells (1±105) was implanted as a single injection in the infarcted region and the myocardial tissue pO2 at the site of cell therapy was measured for 4 weeks. The pO2 was significantly higher in infarcted hearts treated with SM cells (pO2=3.5±0.9 mmHg) compared to untreated hearts (pO2=1.6±0.7 mmHg). We have demonstrated, for the first time, the feasibility of monitoring pO2 in mouse hearts after stem cell therapy.

Keywords

Electron Paramagnetic Resonance Left Anterior Descend Electron Paramagnetic Resonance Spectrum Stem Cell Therapy Mouse Heart 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Orlic, J. Kajstura, S, Chimenti, D. M. Bodine, A. Leri, and P. Anversa, Transplanted adult bone marrow cells repair myocardial infarcts in mice, Ann. N. Y. Acad. Sci. 938, 221–229 (2001).PubMedCrossRefGoogle Scholar
  2. 2.
    J. Y. Min, M. F. Sullivan, Y. Yang, J. P. Zhang, K. L. Converso, J. P. Morgan, and Y. F. Xiao, Significant improvement of heart function by cotransplantation of human mesenchymal stem cells and fetal cardiomyocytes in postinfarcted pigs, Ann. Thorac. Surg. 74(5), 1568–1575 (2002).PubMedCrossRefGoogle Scholar
  3. 3.
    A. A. Kocher, M. D. Schuster, M. J. Szabolcs, S. Takuma, D. Burkhoff, J. Wang, S. Homma, N. M. Edwards, and S. Itescu, Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function, Nat. Med. 7(4), 430–436 (2001).PubMedCrossRefGoogle Scholar
  4. 4.
    C. E. Murry, R. W. Wiseman, S. M. Schwartz, and S. D. Hauschka, Skeletal myoblast transplantation for repair of myocardial necrosis, J. Clin. Inves. 98(11), 2512–2523 (1996).Google Scholar
  5. 5.
    K. A. Hutcheson, B. Z. Atkins, M. T. Hueman, M. B. Hopkins, D. D. Glower, and D. A. Taylor, Comparison of benefits on myocardial performance of cellular cardiomyoplasty with skeletal myoblasts and fibroblasts, Cell Transplant. 9(3), 359–368 (2000).PubMedGoogle Scholar
  6. 6.
    M. Jain, H. Dersimonian, D. A. Brenner, S. Ngoy, P. Teller, A. S. Edge, A. Zawadzka, K. Wetzel, D. B. Sawyer, W. S. Colucci, C. S. Apstein, and R. Liao, Cell therapy attenuates deleterious ventricular remodeling and improves cardiac performance after myocardial infarction, Circulation 103(14), 1920–1927 (2001).PubMedGoogle Scholar
  7. 7.
    B. Pouzet, A. A. Hagege, J. T. Vilquin, M. Desnos, D. Duboc, J. P. Marolleau, and P. Menasche, Transplantation of autologous skeletal myoblasts in ischemic cardiac insufficiency, J. Soc. Biol. 195(1), 47–49 (2001).PubMedGoogle Scholar
  8. 8.
    B. Pouzet, J. T. Vilquin, A. A. Hagege, M. Scorsin, E. Messas, M. Fiszman, K. Schwartz, and P. Menasche, Intramyocardial transplantation of autologous myoblasts: can tissue processing be optimized? Circulation 102(19 Suppl 3), 210–215 (2000).Google Scholar
  9. 9.
    D. A. Taylor, B. Z. Atkins, P. Hungspreugs, T. R. Jones, M. C. Reedy, K. A. Hutcheson, D. D. Glower, and W. E. Kraus, Regenerating functional myocardium: improved performance after skeletal myoblast transplantation, Nat. Med. 4(8), 929–933 (1998).PubMedCrossRefGoogle Scholar
  10. 10.
    M. Scorsin, A. Hagege, J. T. Vilquin, M. Fiszman, F. Marotte, J. L. Samuel, L. Rappaport, K. Schwartz, P. Menasche, Comparison of the effects of fetal cardiomyocyte and skeletal myoblast transplantation on postinfarction left ventricular function, J. Thorac. Cardiovasc. Surg. 119(6), 1169–1175 (2000).PubMedCrossRefGoogle Scholar
  11. 11.
    V. K. Kutala, N. L. Parinandi, R. P. Pandian, and P. Kuppusamy, Simultaneous measurement of oxygenation in intracellular and extracellular compartments of lung microvascular endothelial cells, Antioxid. Redox Signal. 6(3), 597–603 (2004).PubMedCrossRefGoogle Scholar
  12. 12.
    R. P. Pandian, N. L. Parinandi, G. Ilangovan, J. L. Zweier, and P. Kuppusamy, Novel particulate spin probe for targeted determination of oxygen in cells and tissues, Free Radic. Biol. Med. 35(9), 1138–1148 (2003).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Mahmood Khan
    • 1
  • Vijay Kumar Kutala
    • 1
  • Sheik Wisel
    • 2
  • Simi M. Chacko
    • 1
  • M. Lakshmi Kuppusamy
    • 1
  • Pawel Kwiatkowski
    • 2
  • Periannan Kuppusamy
    • 1
  1. 1.Division of Cardiovascular Medicine, Department of Internal MedicineCenter for Biomedical EPR Spectroscopy and Imaging, Davis Heart and Lung Research InstituteColumbus
  2. 2.Division of Cardiothoracic Surgery, Department of SurgeryThe Ohio State UniversityColumbus

Personalised recommendations