Effect of Alternate Energy Substrates on Mammalian Brain Metabolism During Ischemic Events

  • S.S. Koppaka
  • M.A. Puchowicz
  • J.C. LaManna
  • J.E. Gatica
Part of the Advances In Experimental Medicine And Biology book series (AEMB, volume 614)


Regulation of brain metabolism and cerebral blood flow involves complex control systems with several interacting variables at both cellular and organ levels. Quantitative understanding of the spatially and temporally heterogeneous brain control mechanisms during internal and external stimuli requires the development and validation of a computational (mathematical) model of metabolic processes in brain. This paper describes a computational model of cellular metabolismin blood-perfused brain tissue,which considers the astrocyteneuron lactate-shuttle (ANLS) hypothesis. The model structure consists of neurons, astrocytes, extra-cellular space, and a surrounding capillary network. Each cell is further compartmentalized into cytosol and mitochondria. Inter-compartment interaction is accounted in the form of passive and carrier-mediated transport. Our model was validated against experimental data reported by Crumrine and LaManna, who studied the effect of ischemia and its recovery on various intra-cellular tissue substrates under standard diet conditions. The effect of ketone bodies on brain metabolism was also examined under ischemic conditions following cardiac resuscitation through our model simulations. The influence of ketone bodies on lactate dynamics on mammalian brain following ischemia is studied incorporating experimental data.


Lactate Level Ketone Body Ketogenic Diet Flux Balance Analysis Brain Metabolism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. P. Chih and E. L. Roberts Jr, Energy substrates for neurons during neural activity: a critical review of the astrocyte-neuron lactate shuttle hypothesis, J Cereb Blood Flow Metab 23(11), 1263–1281 (2003).PubMedCrossRefGoogle Scholar
  2. 2.
    R. L. Leino, D. Z. Gerhart, A. M. van Bueren, A. L. McCall, and L. R. Drewes, Ultrastructural localization of GLUT 1 and GLUT 3 glucose transporters in rat brain , J Neurosci Res 49(5), 617–626 (1997).PubMedCrossRefGoogle Scholar
  3. 3.
    D. Z. Gerhart, B. E. Enerson, O. Y. Zhdankina, R. L. Leino, and L. R. Drewes, Expression of monocarboxylate transporter MCT1 by brain endothelium and glia in adult and suckling rats , Am J Physiol 273(1 Pt 1), E207–E213 (1997).PubMedGoogle Scholar
  4. 4.
    P. J. Magistretti, L. Pellerin, D. L. Rothman, and R. G. Shulman, Energy on demand , Science 283(5401), 496–497 (1999).PubMedCrossRefGoogle Scholar
  5. 5.
    L. Pellerin and P. J. Magistretti, Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization, Proc Natl Acad Sci U S A 91(22), 10625–10629 (1994).PubMedCrossRefGoogle Scholar
  6. 6.
    G. A. Dienel and L. Hertz, Glucose and lactate metabolism during brain activation , J Neurosci Res 66(5), 824–838 (2001).PubMedCrossRefGoogle Scholar
  7. 7.
    A. Gjedde, S. Marrett, and M. Vafaee, Oxidative and nonoxidative metabolism of excited neurons and astrocytes , J Cereb Blood Flow Metab 22(1), 1–14 (2002).PubMedCrossRefGoogle Scholar
  8. 8.
    A. Aubert, R. Costalat, and R. Valabregue, Modelling of the coupling between brain electrical activity and metabolism Acta Biotheor 49(4), 301–326 (2001).PubMedCrossRefGoogle Scholar
  9. 9.
    A. Aubert and R. Costalat, Interaction between astrocytes and neurons studied using a mathematical model of compartmentalized energy metabolism J Cereb Blood Flow Metab 25(11), 1476–1490 (2005).PubMedCrossRefGoogle Scholar
  10. 10.
    F. Hyder, A. B. Patel, A. Gjedde, D. L. Rothman, K. L. Behar, and R. G. Shulman, Neuronal-glial glucose oxidation and glutamatergic-GABAergic function J Cereb Blood Flow Metab 26(7), 865–877 (2006).PubMedCrossRefGoogle Scholar
  11. 11.
    O. H. Lowry and J. V. Passonneau, The relationship between substrates and enzymes of glycolysis in brain J Biol Chem 239, 31–42 (1964).PubMedGoogle Scholar
  12. 12.
    B. K. Siesjo, Brain Energy Metabolism, (John Wiley & Sons, New York, 1978).Google Scholar
  13. 13.
    O. E. Owen, A. P. Morgan, H. G. Kemp, J. M. Sullivan, M. G. Herrera, and G. F. Cahill, Jr., Brain metabolism during fasting J Clin Invest 46(10), 1589–1595 (1967).PubMedGoogle Scholar
  14. 14.
    D. Z. Gerhart, B. E. Enerson, O. Y. Zhdankina, R. L. Leino, and L. R. Drewes, Expression of the monocarboxylate transporter MCT2 by rat brain glia Glia 22(3), 272–281 (1998).PubMedCrossRefGoogle Scholar
  15. 15.
    R. L. Veech, B. Chance, Y. Kashiwaya, H. A. Lardy, and G. F. Cahill, Jr., Ketone bodies, potential therapeutic uses IUBMB Life 51(4), 241–247 (2001).PubMedGoogle Scholar
  16. 16.
    Y. Kashiwaya, T. Takeshima, N. Mori, K. Nakashima, K. Clarke, and R. L. Veech, D-beta-hydroxybutyrate protects neurons in models of Alzheimer's and Parkinson's disease Proc Natl Acad Sci U S A 97(10), 5440–5444 (2000).PubMedCrossRefGoogle Scholar
  17. 17.
    M. Guzman and C. Blazquez, Is there an astrocyte-neuron ketone body shuttle? Trends Endocrinol Metab 12(4), 169–173 (2001).PubMedCrossRefGoogle Scholar
  18. 18.
    H. S. Noh, Y. S. Hah, R. Nilufar, J. Han, J. H. Bong, S.S. Kang, G. J. Cho, and W. S. Choi, Acetoacetate protects neuronal cells from oxidative glutamate toxicity J Neurosci Res 83(4), 702–709 (2006).PubMedCrossRefGoogle Scholar
  19. 19.
    M. A. Puchowicz, D. S. Emancipator, K. Xu, D. L. Magness, O. I. Ndubuizu, W. D. Lust, and J. C. Lamanna, Adaptation to chronic hypoxia during diet-induced ketosis Adv Exp Med Biol 566 51–57 (2005).PubMedCrossRefGoogle Scholar
  20. 20.
    M. A. Puchowicz, Emancipator D.S., K. Xu, and J. C. LaManna, Diet induced ketosis reduces lactate levels in acute hypoxic rat brain FASEB 845.5 (2004).Google Scholar
  21. 21.
    R. C. Crumrine and J. C. LaManna, Regional cerebral metabolites, blood flow, plasma volume, and mean transit time in total cerebral ischemia in the rat J Cereb Blood Flow Metab 11(2), 272–282 (1991).PubMedGoogle Scholar
  22. 22.
    J. Kim, G. M. Saidel, and M. E. Cabrera, Multi-scale computational model of fuel homeostasis during exercise: effect of hormonal control Ann Biomed Eng 35(1), 69–90 (2007).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • S.S. Koppaka
    • 1
    • 2
  • M.A. Puchowicz
    • 2
    • 3
  • J.C. LaManna
    • 2
    • 3
  • J.E. Gatica
    • 1
    • 2
  1. 1.Department of Chemical and Biomedical EngineeringCleveland State UniversityCleveland
  2. 2.Center for Modeling Integrated Metabolic Systems (MIMS)Cleveland
  3. 3.Department of AnatomySchool of Medicine, Case Western Reserve UniversityClevelandUSA

Personalised recommendations