Skip to main content

Effect of Alternate Energy Substrates on Mammalian Brain Metabolism During Ischemic Events

  • Conference paper
Oxygen Transport to Tissue XXIX

Part of the book series: Advances In Experimental Medicine And Biology ((AEMB,volume 614))

Abstract

Regulation of brain metabolism and cerebral blood flow involves complex control systems with several interacting variables at both cellular and organ levels. Quantitative understanding of the spatially and temporally heterogeneous brain control mechanisms during internal and external stimuli requires the development and validation of a computational (mathematical) model of metabolic processes in brain. This paper describes a computational model of cellular metabolismin blood-perfused brain tissue,which considers the astrocyteneuron lactate-shuttle (ANLS) hypothesis. The model structure consists of neurons, astrocytes, extra-cellular space, and a surrounding capillary network. Each cell is further compartmentalized into cytosol and mitochondria. Inter-compartment interaction is accounted in the form of passive and carrier-mediated transport. Our model was validated against experimental data reported by Crumrine and LaManna, who studied the effect of ischemia and its recovery on various intra-cellular tissue substrates under standard diet conditions. The effect of ketone bodies on brain metabolism was also examined under ischemic conditions following cardiac resuscitation through our model simulations. The influence of ketone bodies on lactate dynamics on mammalian brain following ischemia is studied incorporating experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. P. Chih and E. L. Roberts Jr, Energy substrates for neurons during neural activity: a critical review of the astrocyte-neuron lactate shuttle hypothesis, J Cereb Blood Flow Metab 23(11), 1263–1281 (2003).

    Article  PubMed  CAS  Google Scholar 

  2. R. L. Leino, D. Z. Gerhart, A. M. van Bueren, A. L. McCall, and L. R. Drewes, Ultrastructural localization of GLUT 1 and GLUT 3 glucose transporters in rat brain , J Neurosci Res 49(5), 617–626 (1997).

    Article  PubMed  CAS  Google Scholar 

  3. D. Z. Gerhart, B. E. Enerson, O. Y. Zhdankina, R. L. Leino, and L. R. Drewes, Expression of monocarboxylate transporter MCT1 by brain endothelium and glia in adult and suckling rats , Am J Physiol 273(1 Pt 1), E207–E213 (1997).

    PubMed  CAS  Google Scholar 

  4. P. J. Magistretti, L. Pellerin, D. L. Rothman, and R. G. Shulman, Energy on demand , Science 283(5401), 496–497 (1999).

    Article  PubMed  CAS  Google Scholar 

  5. L. Pellerin and P. J. Magistretti, Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization, Proc Natl Acad Sci U S A 91(22), 10625–10629 (1994).

    Article  PubMed  CAS  Google Scholar 

  6. G. A. Dienel and L. Hertz, Glucose and lactate metabolism during brain activation , J Neurosci Res 66(5), 824–838 (2001).

    Article  PubMed  CAS  Google Scholar 

  7. A. Gjedde, S. Marrett, and M. Vafaee, Oxidative and nonoxidative metabolism of excited neurons and astrocytes , J Cereb Blood Flow Metab 22(1), 1–14 (2002).

    Article  PubMed  CAS  Google Scholar 

  8. A. Aubert, R. Costalat, and R. Valabregue, Modelling of the coupling between brain electrical activity and metabolism Acta Biotheor 49(4), 301–326 (2001).

    Article  PubMed  CAS  Google Scholar 

  9. A. Aubert and R. Costalat, Interaction between astrocytes and neurons studied using a mathematical model of compartmentalized energy metabolism J Cereb Blood Flow Metab 25(11), 1476–1490 (2005).

    Article  PubMed  CAS  Google Scholar 

  10. F. Hyder, A. B. Patel, A. Gjedde, D. L. Rothman, K. L. Behar, and R. G. Shulman, Neuronal-glial glucose oxidation and glutamatergic-GABAergic function J Cereb Blood Flow Metab 26(7), 865–877 (2006).

    Article  PubMed  CAS  Google Scholar 

  11. O. H. Lowry and J. V. Passonneau, The relationship between substrates and enzymes of glycolysis in brain J Biol Chem 239, 31–42 (1964).

    PubMed  CAS  Google Scholar 

  12. B. K. Siesjo, Brain Energy Metabolism, (John Wiley & Sons, New York, 1978).

    Google Scholar 

  13. O. E. Owen, A. P. Morgan, H. G. Kemp, J. M. Sullivan, M. G. Herrera, and G. F. Cahill, Jr., Brain metabolism during fasting J Clin Invest 46(10), 1589–1595 (1967).

    PubMed  CAS  Google Scholar 

  14. D. Z. Gerhart, B. E. Enerson, O. Y. Zhdankina, R. L. Leino, and L. R. Drewes, Expression of the monocarboxylate transporter MCT2 by rat brain glia Glia 22(3), 272–281 (1998).

    Article  PubMed  CAS  Google Scholar 

  15. R. L. Veech, B. Chance, Y. Kashiwaya, H. A. Lardy, and G. F. Cahill, Jr., Ketone bodies, potential therapeutic uses IUBMB Life 51(4), 241–247 (2001).

    PubMed  CAS  Google Scholar 

  16. Y. Kashiwaya, T. Takeshima, N. Mori, K. Nakashima, K. Clarke, and R. L. Veech, D-beta-hydroxybutyrate protects neurons in models of Alzheimer's and Parkinson's disease Proc Natl Acad Sci U S A 97(10), 5440–5444 (2000).

    Article  PubMed  CAS  Google Scholar 

  17. M. Guzman and C. Blazquez, Is there an astrocyte-neuron ketone body shuttle? Trends Endocrinol Metab 12(4), 169–173 (2001).

    Article  PubMed  CAS  Google Scholar 

  18. H. S. Noh, Y. S. Hah, R. Nilufar, J. Han, J. H. Bong, S.S. Kang, G. J. Cho, and W. S. Choi, Acetoacetate protects neuronal cells from oxidative glutamate toxicity J Neurosci Res 83(4), 702–709 (2006).

    Article  PubMed  CAS  Google Scholar 

  19. M. A. Puchowicz, D. S. Emancipator, K. Xu, D. L. Magness, O. I. Ndubuizu, W. D. Lust, and J. C. Lamanna, Adaptation to chronic hypoxia during diet-induced ketosis Adv Exp Med Biol 566 51–57 (2005).

    Article  PubMed  CAS  Google Scholar 

  20. M. A. Puchowicz, Emancipator D.S., K. Xu, and J. C. LaManna, Diet induced ketosis reduces lactate levels in acute hypoxic rat brain FASEB 845.5 (2004).

    Google Scholar 

  21. R. C. Crumrine and J. C. LaManna, Regional cerebral metabolites, blood flow, plasma volume, and mean transit time in total cerebral ischemia in the rat J Cereb Blood Flow Metab 11(2), 272–282 (1991).

    PubMed  CAS  Google Scholar 

  22. J. Kim, G. M. Saidel, and M. E. Cabrera, Multi-scale computational model of fuel homeostasis during exercise: effect of hormonal control Ann Biomed Eng 35(1), 69–90 (2007).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this paper

Cite this paper

Koppaka, S., Puchowicz, M., LaManna, J., Gatica, J. (2008). Effect of Alternate Energy Substrates on Mammalian Brain Metabolism During Ischemic Events. In: Kang, K.A., Harrison, D.K., Bruley, D.F. (eds) Oxygen Transport to Tissue XXIX. Advances In Experimental Medicine And Biology, vol 614. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-74911-2_40

Download citation

Publish with us

Policies and ethics