Skip to main content

Modeling Oxygen and Carbon Dioxide Transport and Exchange Using a Closed Loop Circulatory System

  • Conference paper
Oxygen Transport to Tissue XXIX

Abstract

The binding and buffering of O2 and CO2 in the blood influence their exchange in lung and tissues and their transport through the circulation. To investigate the binding and buffering effects, a model of blood-tissue gas exchange is used. The model accounts for hemoglobin saturation, the simultaneous binding of O2, CO2 , H+, 2,3-DPG to hemoglobin, and temperature effects [1,2]. Invertible Hill-type saturation equations facilitate rapid calculation of respiratory gas redistribution among the plasma, red blood cell and tissue that occur along the concentration gradients in the lung and in the capillary-tissue exchange regions. These equations are well-suited to analysis of transients in tissue metabolism and partial pressures of inhaled gas. The modeling illustrates that because red blood cell velocities in the flowing blood are higher than plasma velocities after a transient there can be prolonged differences between RBC and plasma oxygen partial pressures. The bloodtissue gas exchange model has been incorporated into a higher level model of the circulatory system plus pulmonary mechanics and gas exchange using the RBC and plasma equations to account for pH and CO2 buffering in the blood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. K. Dash and J. B. Bassingthwaighte, Blood HbO(2) and HbCO(2) dissociation curves at varied O-2, CO2, pH, 2,3-DPG and temperature levels, Ann Biomed Eng 32(12), 1676–1693 (2004).

    Article  PubMed  Google Scholar 

  2. R. K. Dash and J. B. Bassingthwaighte, Simultaneous blood-tissue exchange of oxygen, carbon dioxide, bicarbonate, and hydrogen ion, Ann Biomed Eng 34(7), 1129–1148 (2006).

    Article  PubMed  Google Scholar 

  3. E. H. Bloch, A quantitative study of the hemodynamics in the living microvascular system, Am J Anat 110(2), 125–153 (1962).

    Article  PubMed  CAS  Google Scholar 

  4. H. Vink and B. R. Duling, Identification of distinct luminal domains for macromolecules, erythrocytes, and leukocytes within mammalian capillaries, Circ Res 79(3), 581–589 (1996).

    PubMed  CAS  Google Scholar 

  5. C. A. Goresky, A linear method for determining liver sinusiodal and extravascular volumes, Am J Physiol 204(4), 626–640 (1963).

    PubMed  CAS  Google Scholar 

  6. K. R. Lutchen, F. P. Primiano and G. M. Saidel, A non-linear model combining pulmonary mechanics and gas concentration dynamics, IEEEE Trans Biomed Eng 29(9), 629–641 (1982).

    Article  CAS  Google Scholar 

  7. G. S. Kassab, C. A. Rider, N. J. Tang and Y. C. B. Fung, Morphometry of pig coronary arterial trees, Am J Physiol Heart Circ Physiol 265(1), H350–H365 (1993).

    CAS  Google Scholar 

  8. H. H. Lipowsky, S. Usami and S. Chien, Invivo measurements of apparent viscosity and microvessel hematocrit in the mesentery of the cat, Microvasc Res 19(3), 297–319 (1980).

    Article  PubMed  CAS  Google Scholar 

  9. B. R. Duling and R. M. Berne, Longitudinal gradients in periarteriolar oxygen tension: A possible mechanism for participation of oxygen in local regulation of blood flow, Circ Res 27(5), 669–678 (1970).

    PubMed  CAS  Google Scholar 

  10. J. B. Bassingthwaighte, I. S. J. Chan and C. Y. Wang, Computationally efficient algorithms for convection-permeation-diffusion models for blood-tissue exchange, Ann Biomed Eng 20(6), 687–725 (1992).

    Article  PubMed  CAS  Google Scholar 

  11. K. Dalziel and J. R. P. O'Brien, The kinetics of deoxygenation of human haemoglobin, Biochem J 78(236–245 (1961).

    PubMed  CAS  Google Scholar 

  12. J. M. Vanderkooi, G. Maniara, T. J. Green and D. F. Wilson, An optical method for measurement of dioxygen concentration based upon quenching of phosphorescence, J Biol Chem 262(12), 5476–5482 (1987).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this paper

Cite this paper

Carlson, B.E., Anderson, J.C., Raymond, G.M., Dash, R.K., Bassingthwaighte, J.B. (2008). Modeling Oxygen and Carbon Dioxide Transport and Exchange Using a Closed Loop Circulatory System. In: Kang, K.A., Harrison, D.K., Bruley, D.F. (eds) Oxygen Transport to Tissue XXIX. Advances In Experimental Medicine And Biology, vol 614. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-74911-2_39

Download citation

Publish with us

Policies and ethics