Skip to main content

Cerebral Tissue Oxygen Saturation Calculated Using Low Frequency Haemoglobin Oscillations Measured by Near Infrared Spectroscopy in Adult Ventilated Patients

  • Conference paper
Oxygen Transport to Tissue XXIX

Abstract

Oxy- (HbO2) and deoxy- (HHb) haemoglobin signalsmeasured by near infrared (NIR) spectroscopy over the human frontal lobes frequently contain respiratory and low frequency oscillations (LFOs). It has been suggested previously that venous oxygen saturation (SvO2) can be calculated from these respiratory oscillations. In this paper, we investigated the use of a Fourier transform based algorithm to calculate an oxygen saturation measure known as SoscO2 which may be a close estimate of the underlying SvO2. SoscO2 was calculated using three different frequency ranges, (1) respiratory oscillations only, (2) LFOs only, and (3) both respiratory oscillations and LFOs. At each frequency range SoscO2 was calculated using either (1) the modified Beer-Lambert law (MBL) or (2) spatially resolved spectroscopy (SRS). In total six different measurements of SoscO2 were investigated here. Experiments were performed in six adult ventilated patients with traumatic brain injury. The patients’ inspired oxygen fraction (FiO2) was raised in two hyperoxic phases. The calculated SoscO2 values were compared with other cerebral oxygenation measures including an intraparenchymal catheter based brain tissue oxygen tension (PbrO2) and the NIR based tissue oxygenation index (TOI). It was found that the SoscO2 calculated using the combined respiratory and LFO frequency range and the SRS method resulted in the highest detection rates of hyperoxic changes.This measure of SoscO2 may provide a viable, continuous, non invasive, bedside measure of cerebral venous oxygen saturation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Skov, O. Pryds, G. Greisen, H. Lou, Estimation of cerebral venous saturation in newborn infants by near infrared spectroscopy, Pediatr Res 33(1), 52–55 (1993).

    Article  PubMed  CAS  Google Scholar 

  2. C. W. Yoxall, A. M. Weindling, The measurement of peripheral venous oxyhemoglobin saturation in newborn infants by near infrared spectroscopy with venous occlusion, Pediatr Res 39, 1103–1106 (1996).

    Article  PubMed  CAS  Google Scholar 

  3. C. E. Elwell, S. J. Matcher, L. Tyszczuk, J. H. Meek, D. T. Delpy, Measurement of cerebral venous saturation in adults using near infrared spectroscopy, Adv Exp Med Biol 411, 453–460 (1997).

    PubMed  CAS  Google Scholar 

  4. C. E. Elwell, H. Owen-Reece, J. S. Wyatt, M. Cope, E. O. R. Reynolds, D. T. Delpy, Influence of respiration and changes in expiratory pressure on cerebral hemoglobin concentration measured by near-infrared spectroscopy, J Cereb Blood Flow Metab 16(2), 353–357 (1996).

    Article  PubMed  CAS  Google Scholar 

  5. M. Wolf, G. Duc, M. Keel, P. Niederer, K. von Siebenthal, H-U. Bucher, Continuous noninvasive measurement of cerebral arterial and venous oxygen saturation at the bedside in mechanically ventilated neonates, Crit Care Med 25(9), 1579–1582 (1997).

    Article  PubMed  CAS  Google Scholar 

  6. M. A. Franceschini, D. A. Boas, A. Zourabian, S. G. Diamond, S. Nadgir, D. W. Lin, J. B. Moore, S. Fantini, Near-infrared spiroximetry: noninvasive measurements of venous saturation in piglets and human subjects, J Appl Phyiol 92, 372–384 (2002).

    Google Scholar 

  7. L. Nilsson, A. Johansson, S. Kalman, Macrocirculation is not the sole determinant of respiratory induced variations in the reflection mode photoplethysmographic signal, Physiol Meas 24, 925–937 (2003).

    Article  PubMed  CAS  Google Scholar 

  8. R. M. Berne, M. N. Levy, Cardiovascular Physiology (7th ed.), St. Louis, MO: Mosby Year Book (1997).

    Google Scholar 

  9. C. E. Elwell, R. Springett, E. Hillman, D. T. Delpy, Oscillations in cerebral haemodynamics – implications for functional activation studies, Adv Exp Med Bio 471, 57–65 (1999).

    CAS  Google Scholar 

  10. H. Obrig, M. Neufang, R. Wenzel, M. Kohl, J. Steinbrink, K. Einhaupl, A. Villringer, Spontaneous low frequency oscillations of cerebral hemodynamics and metabolism in human adults, Neuroimage 12, 623–639 (2000).

    Article  PubMed  CAS  Google Scholar 

  11. I. Tachtsidis, C. E. Elwell, T. S. Leung, C. W. Lee, M. Smith, D. T. Delpy, Investigation of cerebral haemodynamics by near infrared spectroscopy in young healthy volunteers reveals posture dependent spontaneous oscillations, Physiol Meas 25(2), 437–445 (2004).

    Article  PubMed  Google Scholar 

  12. T. Katura, N. Tanaka, A. Obata, H. Sato, A. Maki, Quantitative evaluation of interrelations between spontaneous low-frequency oscillations in cerebral hemodynamics and systemic cardiovascular dynamics, Neuroimage, 31, 1592–1600 (2006).

    Article  PubMed  Google Scholar 

  13. A. C. Guyton, J. E. Hall, The textbook of medical physiology, 10th ed. W.B.Sunders Company, Philadelphia (2000).

    Google Scholar 

  14. K. Siebenthal, J. Beran, M. Wolf, M. Keel, V. Dietz, S. Kundu, H. U. Bucher, Cyclical fluctuations in blood pressure, heart rate and cerebral blood volume in preterm infants, Brain Dev 21(8), 529–534 (1999).

    Article  Google Scholar 

  15. H. Nilsson, C. Aalkjaer, Vasomotion: mechanisms and physiological importance, Mol Interv 3(2), 79–89 (2003).

    Article  PubMed  CAS  Google Scholar 

  16. J. Nortje, A. K. Gupta, The role of tissue oxygen monitoring in patients with acute brain injury,Brit J Anaesthesia 97(1), 95–106 (2006).

    Article  CAS  Google Scholar 

  17. S. Suzuki, S. Takasaki, T. Ozaki, Y. Kobayashi, A Tissue Oxygenation Monitor using NIR Spatially Resolved Spectroscopy, Proc SPIE 3597 582–592 (1999).

    Article  CAS  Google Scholar 

  18. P. G. Al-Rawi, P. Smielewski, P. J. Kirkpatrick, Evaluation of a near-infrared spectrometer (NIRO 300) for the detection of intracranial oxygenation changes in the adult head. Stroke 32(11), 2492–2500 (2001).

    Article  PubMed  CAS  Google Scholar 

  19. H. M. Watzman, C. D. Kurth, L. M. Montenegro, J. Rome, J. M. Steven, S. C. Nicolson, Arterial and venous contributions to near-infrared cerebral oximetry, Anesthesiology 93, 947–953 (2000).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this paper

Cite this paper

Leung, T.S., Tisdall, M.M., Tachtsidis, I., Smith, M., Delpy, D.T., Elwell, C.E. (2008). Cerebral Tissue Oxygen Saturation Calculated Using Low Frequency Haemoglobin Oscillations Measured by Near Infrared Spectroscopy in Adult Ventilated Patients. In: Kang, K.A., Harrison, D.K., Bruley, D.F. (eds) Oxygen Transport to Tissue XXIX. Advances In Experimental Medicine And Biology, vol 614. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-74911-2_27

Download citation

Publish with us

Policies and ethics