Computationally Determined Shear on Cells Grown in Orbiting Culture Dishes

  • R. Eric Berson
  • Matthew R. Purcell
  • M. Keith Sharp
Part of the Advances In Experimental Medicine And Biology book series (AEMB, volume 614)


A new computational model, using computational fluid dynamics (CFD), is presented that describes fluid behavior in cylindrical cell culture dishes resulting from motion imparted by an orbital shaker apparatus. This model allows for the determination of wall shear stresses over the entire area of the bottom surface of a dish (representing the growth surface for cells in culture) which was previously too complex for accurate quantitative analysis. Two preliminary cases are presented that show the complete spatial resolution of the shear on the bottom of the dishes. The maximum shear stress determined from the model is compared to an existing simplified point function that provides only the maximum value. Furthermore, this new model incorporates seven parameters versus the four in the previous technique, providing improved accuracy. Optimization of computational parameters is also discussed.


Shear Stress Computational Fluid Dynamic Wall Shear Stress Maximum Shear Stress Fluid Shear Stress 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.J. Levesque and R.M. Nerem, The elongation and orientation of cultured endothelial cells in response to shear stress, J Biomech Eng, 107(4), 341–347 (1985).PubMedGoogle Scholar
  2. 2.
    R.J. Satcher Jr., S.R. Bussolari, M.A. Gimbrone Jr., and C.F. Dewey Jr., The distribution of fluid forces on model arterial endothelium using computational fluid dynamics, J Biomech Eng, 114(3), 309–316 (1992).PubMedGoogle Scholar
  3. 3.
    P.F. Davies, A. Remuzzi, E.J. Gordon, C.F. Dewey Jr., and M.A. Gimbrone Jr., Turbulent fluid shear stress induces vascular endothelial turnover in vitro, Proc of the Nat Acad of Sci, 83, 2114–2117 (1986).CrossRefGoogle Scholar
  4. 4.
    N. DePaola, M.A. Gimbrone Jr., P.F. Davies, and C.F. Dewey Jr., Vascular endothelium responds to fluid shear stress gradients. Arteriosclerosis and Thrombosis, 12(11), 1254–1257 (1992).PubMedGoogle Scholar
  5. 5.
    C.F. Dewey, S.R. Bussolari, M.A. Gimbrone, and P.F. Davies, The dynamic response of vascular endothelial cells to fluid shear stress, J Biomech Eng, 103(3), 177–185 (1981).PubMedCrossRefGoogle Scholar
  6. 6.
    D.L. Fry, Acute vascular endothelial changes associated with increased blood velocity gradients. Circ Res, 22, 165–197 (1968).PubMedGoogle Scholar
  7. 7.
    L.W. Kraiss, A.S. Weyrich, N.M. Alto, D.A. Dixon, T.M. Ennis, V. Modur, T.M. McIntyre, S.M. Prescott, and G.A. Zimmerman, Fluid flow activates a regulator of translation, p70/p85 S6 kinase, in human endothelial cells, Am J Physiology, 278(5), H1537–1544 (2000).Google Scholar
  8. 8.
    L.W. Kraiss, N.M. Alto, D.A. Dixon, T.M. McIntyre, A.S. Weyrich, and G.A. Zimmerman, Fluid flow regulates E-selectin protein levels in human endothelial cells by inhibiting translation, J Vasc Surg, 37(1), 161–168 (2003).PubMedCrossRefGoogle Scholar
  9. 9.
    W.E. Stehbens, Hemodynamics and atherosclerosis. Biorheology, 19, 95–101 (1982).PubMedGoogle Scholar
  10. 10.
    R.M. Nerem and M.J. Levesque. Fluid dynamics as a factor in the localization of atherosclerosis. Surface phenomena in Hemorheology: Their theoretical, experimental and clinical aspects, edited by A.L. Copely and G.V.F. Seaman, Annals of the New York Academy of Science, 416, 709–719 (1984).Google Scholar
  11. 11.
    V.S. Repin, V.V. Dolgov, O.E. Zaikina, I.D. Novikov, A.S. Antonov, N.A. Nikolaeva, and V.N. Smirnov, Heterogeneity of endothelium in human aorta. A quantitative analysis by scanning electron microscopy, Atherosclerosis, 50(1), 35–52 (1984).PubMedCrossRefGoogle Scholar
  12. 12.
    D.P. Giddens, C.K. Zarins, and S. Glagov, The role of fluid mechanics in the localisation and detection of atherosclerosis, J Biomech Eng, 115(4B), 588–594 (1993).PubMedGoogle Scholar
  13. 13.
    S. Glagov, C.K. Zarins, D.P. Giddens, and D.N. Ku, Haemodynamics and atherosclerosis. Insights and perspectives gained from studies of human arteries, Archives of Pathology and Laboratory Medicine, 112(10), 1018–1031.Google Scholar
  14. 14.
    A.M. Malek, S.L. Alper, and S. Izumo, Hemodynamic shear stress and its role in atherosclerosis, J. Amer Med Assoc, 282(21), 2035–2042 (1999).CrossRefGoogle Scholar
  15. 15.
    K. Ley, E. Lundgren, E. Berger, and K. Arfors, Shear-dependent inhibition of granulocyte adhesion to cultured endothelium by dextran sulfate, Blood, 73(5), 1324–1330 (1989).PubMedGoogle Scholar
  16. 16.
    M. Haga, A. Yamashita, J. Paszkowiak, B.E. Sumpio, and A. Dardik, Oscillatory shear stress increases smooth muscle cell proliferation and Akt phosphorylation, J Vasc Surg, 37(6), 1277–1284 (2003).PubMedCrossRefGoogle Scholar
  17. 17.
    A.V. Sterpetti, A. Cucina, L.S. D’Angelo, B. Cardillo, and A. Cvallaro, Shear stress modulates the proliferation rate, protein synthesis, and mitogenic activity of arterial smooth muscle cells, Surgery, 113(6), 691–699 (1993).PubMedGoogle Scholar
  18. 18.
    H. Ueba, M. Kawakami, and T. Yaginuma, Shear stress as an inhibitor of vascular smooth muscle cell proliferation: role of transforming growth factor-β1 and tissue-type plasminogen activator, Arteriosclerosis, Thrombosis & Vascular Biology, 17(8), 1512–1516 (1997).Google Scholar
  19. 19.
    A. Dardik, L. Chen, J. Frattini, H. Asada, F. Haziz, F. Kudo, and B. Sumpio, Differential effects of orbital and laminar shear stress on endothelial cells. J. Vasc Surg 41(5), 869–880 (2005).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • R. Eric Berson
    • 1
  • Matthew R. Purcell
    • 1
  • M. Keith Sharp
    • 2
  1. 1.Department of Chemical EngineeringUniversity of LouisvilleLouisville
  2. 2.Department of Mechanical EngineeringUniversity of LouisvilleLouisville

Personalised recommendations