Skip to main content

Computationally Determined Shear on Cells Grown in Orbiting Culture Dishes

  • Conference paper
Oxygen Transport to Tissue XXIX

Part of the book series: Advances In Experimental Medicine And Biology ((AEMB,volume 614))

Abstract

A new computational model, using computational fluid dynamics (CFD), is presented that describes fluid behavior in cylindrical cell culture dishes resulting from motion imparted by an orbital shaker apparatus. This model allows for the determination of wall shear stresses over the entire area of the bottom surface of a dish (representing the growth surface for cells in culture) which was previously too complex for accurate quantitative analysis. Two preliminary cases are presented that show the complete spatial resolution of the shear on the bottom of the dishes. The maximum shear stress determined from the model is compared to an existing simplified point function that provides only the maximum value. Furthermore, this new model incorporates seven parameters versus the four in the previous technique, providing improved accuracy. Optimization of computational parameters is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.J. Levesque and R.M. Nerem, The elongation and orientation of cultured endothelial cells in response to shear stress, J Biomech Eng, 107(4), 341–347 (1985).

    PubMed  CAS  Google Scholar 

  2. R.J. Satcher Jr., S.R. Bussolari, M.A. Gimbrone Jr., and C.F. Dewey Jr., The distribution of fluid forces on model arterial endothelium using computational fluid dynamics, J Biomech Eng, 114(3), 309–316 (1992).

    PubMed  Google Scholar 

  3. P.F. Davies, A. Remuzzi, E.J. Gordon, C.F. Dewey Jr., and M.A. Gimbrone Jr., Turbulent fluid shear stress induces vascular endothelial turnover in vitro, Proc of the Nat Acad of Sci, 83, 2114–2117 (1986).

    Article  CAS  Google Scholar 

  4. N. DePaola, M.A. Gimbrone Jr., P.F. Davies, and C.F. Dewey Jr., Vascular endothelium responds to fluid shear stress gradients. Arteriosclerosis and Thrombosis, 12(11), 1254–1257 (1992).

    PubMed  CAS  Google Scholar 

  5. C.F. Dewey, S.R. Bussolari, M.A. Gimbrone, and P.F. Davies, The dynamic response of vascular endothelial cells to fluid shear stress, J Biomech Eng, 103(3), 177–185 (1981).

    Article  PubMed  Google Scholar 

  6. D.L. Fry, Acute vascular endothelial changes associated with increased blood velocity gradients. Circ Res, 22, 165–197 (1968).

    PubMed  CAS  Google Scholar 

  7. L.W. Kraiss, A.S. Weyrich, N.M. Alto, D.A. Dixon, T.M. Ennis, V. Modur, T.M. McIntyre, S.M. Prescott, and G.A. Zimmerman, Fluid flow activates a regulator of translation, p70/p85 S6 kinase, in human endothelial cells, Am J Physiology, 278(5), H1537–1544 (2000).

    Google Scholar 

  8. L.W. Kraiss, N.M. Alto, D.A. Dixon, T.M. McIntyre, A.S. Weyrich, and G.A. Zimmerman, Fluid flow regulates E-selectin protein levels in human endothelial cells by inhibiting translation, J Vasc Surg, 37(1), 161–168 (2003).

    Article  PubMed  Google Scholar 

  9. W.E. Stehbens, Hemodynamics and atherosclerosis. Biorheology, 19, 95–101 (1982).

    PubMed  CAS  Google Scholar 

  10. R.M. Nerem and M.J. Levesque. Fluid dynamics as a factor in the localization of atherosclerosis. Surface phenomena in Hemorheology: Their theoretical, experimental and clinical aspects, edited by A.L. Copely and G.V.F. Seaman, Annals of the New York Academy of Science, 416, 709–719 (1984).

    Google Scholar 

  11. V.S. Repin, V.V. Dolgov, O.E. Zaikina, I.D. Novikov, A.S. Antonov, N.A. Nikolaeva, and V.N. Smirnov, Heterogeneity of endothelium in human aorta. A quantitative analysis by scanning electron microscopy, Atherosclerosis, 50(1), 35–52 (1984).

    Article  PubMed  CAS  Google Scholar 

  12. D.P. Giddens, C.K. Zarins, and S. Glagov, The role of fluid mechanics in the localisation and detection of atherosclerosis, J Biomech Eng, 115(4B), 588–594 (1993).

    PubMed  CAS  Google Scholar 

  13. S. Glagov, C.K. Zarins, D.P. Giddens, and D.N. Ku, Haemodynamics and atherosclerosis. Insights and perspectives gained from studies of human arteries, Archives of Pathology and Laboratory Medicine, 112(10), 1018–1031.

    Google Scholar 

  14. A.M. Malek, S.L. Alper, and S. Izumo, Hemodynamic shear stress and its role in atherosclerosis, J. Amer Med Assoc, 282(21), 2035–2042 (1999).

    Article  CAS  Google Scholar 

  15. K. Ley, E. Lundgren, E. Berger, and K. Arfors, Shear-dependent inhibition of granulocyte adhesion to cultured endothelium by dextran sulfate, Blood, 73(5), 1324–1330 (1989).

    PubMed  CAS  Google Scholar 

  16. M. Haga, A. Yamashita, J. Paszkowiak, B.E. Sumpio, and A. Dardik, Oscillatory shear stress increases smooth muscle cell proliferation and Akt phosphorylation, J Vasc Surg, 37(6), 1277–1284 (2003).

    Article  PubMed  Google Scholar 

  17. A.V. Sterpetti, A. Cucina, L.S. D’Angelo, B. Cardillo, and A. Cvallaro, Shear stress modulates the proliferation rate, protein synthesis, and mitogenic activity of arterial smooth muscle cells, Surgery, 113(6), 691–699 (1993).

    PubMed  CAS  Google Scholar 

  18. H. Ueba, M. Kawakami, and T. Yaginuma, Shear stress as an inhibitor of vascular smooth muscle cell proliferation: role of transforming growth factor-β1 and tissue-type plasminogen activator, Arteriosclerosis, Thrombosis & Vascular Biology, 17(8), 1512–1516 (1997).

    CAS  Google Scholar 

  19. A. Dardik, L. Chen, J. Frattini, H. Asada, F. Haziz, F. Kudo, and B. Sumpio, Differential effects of orbital and laminar shear stress on endothelial cells. J. Vasc Surg 41(5), 869–880 (2005).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this paper

Cite this paper

Berson, R.E., Purcell, M.R., Sharp, M.K. (2008). Computationally Determined Shear on Cells Grown in Orbiting Culture Dishes. In: Kang, K.A., Harrison, D.K., Bruley, D.F. (eds) Oxygen Transport to Tissue XXIX. Advances In Experimental Medicine And Biology, vol 614. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-74911-2_22

Download citation

Publish with us

Policies and ethics