Antioxidants Reduce Consequences of Radiation Exposure

  • Paul Okunieff
  • Steven Swarts
  • Peter Keng
  • Weimin Sun
  • Wei Wang
  • Jung Kim
  • Shanmin Yang
  • Hengshan Zhang
  • Chaomei Liu
  • Jacqueline P. Williams
  • Amy K. Huser
  • Lurong Zhang
Part of the Advances In Experimental Medicine And Biology book series (AEMB, volume 614)


Antioxidants have been studied for their capacity to reduce the cytotoxic effects of radiation in normal tissues for at least 50 years. Early research identified sulfur-containing antioxidants as those with the most beneficial therapeutic ratio, even though these compounds have substantial toxicity when given in-vivo. Other antioxidant molecules (small molecules and enzymatic) have been studied for their capacity to prevent radiation toxicity both with regard to reduction of radiation-related cytotoxicity and for reduction of indirect radiation effects including long-term oxidative damage. Finally, categories of radiation protectors that are not primarily antioxidants, including those that act through acceleration of cell proliferation (e.g. growth factors), prevention of apoptosis, other cellular signaling effects (e.g. cytokine signal modifiers), or augmentation of DNA repair, all have direct or indirect effects on cellular redox state and levels of endogenous antioxidants. In this review we discuss what is known about the radioprotective properties of antioxidants, and what those properties tell us about the DNA and other cellular targets of radiation.


Base Excision Repair Human Microvascular Endothelial Cell Radioprotective Effect Chronic Oxidative Stress Unirradiated Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. P. Freyer, K. Jarrett, S. Carpenter, et al., Oxygen enhancement ratio as a function of dose and cell cycle phase for radiation-resistant and sensitive CHO cells, Radiat. Res. 127:297–307 (1991).PubMedCrossRefGoogle Scholar
  2. 2.
    D. J. Grdina, J. S. Murley, and Y. Kataoka, Radioprotectants: Current status and new directions, Oncology 63(suppl. 2):2–10 (2002).PubMedCrossRefGoogle Scholar
  3. 3.
    K. D. Held, Models for thiol protection of DNA in cells, Pharmac. Ther. 39:123–131 (1988).CrossRefGoogle Scholar
  4. 4.
    G. D. Smoluk, R. C. Fahey, and J. F. Ward, Interaction of glutathione and other low-molecular weight thiols with DNA: evidence for counterion condensation and coion depletion near DNA, Radiat. Res. 114:3–10 (1988).PubMedCrossRefGoogle Scholar
  5. 5.
    S. Zheng, G. L. Newton, J. F. Ward, et al., Aerobic radioprotection of pBR322 by thiols: effect of thiol net charge upon scavenging of hydroxyl radicals and repair of DNA radicals, Radiat. Res. 130:183–193 (1992).PubMedCrossRefGoogle Scholar
  6. 6.
    D. Murray, A. Prager, S. C. Vanankeren, et al., Comparative effect of the thiols dithiothreitol, cysteamine and WR-151326 on survival and on the induction of DNA damage in cultured Chinese hamster ovary cells exposed to γ-radiation, Int. J. Radiat. Biol. 58:71–91 (1990).PubMedCrossRefGoogle Scholar
  7. 7.
    S. S. Kumar, T. P. A. Devasagayam, B. Jayshree, et al., Mechanism of protection against radiation-induced DNA damage in plasmid pBR322 by caffeine, Int. J. Radiat. Biol. 77:617–623 (2001).PubMedCrossRefGoogle Scholar
  8. 8.
    R. J. Reiter, D. Tan, J. C. Mayo, et al., Melatonin as an antioxidant: biochemical mechanisms and pathophysiological implications in humans, Acta. Biochem. Pol. 50:1129–1146 (2003).Google Scholar
  9. 9.
    D. K. Maurya, V. P. Salvi, and C. K. K. Nair, Radioprotection of normal tissues in tumor-bearing mice by troxerutin, J. Radiat. Res. 45:221–228 (2004).PubMedCrossRefGoogle Scholar
  10. 10.
    P. Uma Devi, K. S. Bisht, and M. Vinitha, A comparative study of radioprotection by Ocimum flavonoids and synthetic animothiol protectors in the mouse, Brit. J. Radiol. 71:782–784 (1998).Google Scholar
  11. 11.
    J. F. Weiss, and M. R. Landauer, Protection against ionizing radiation by antioxidant nutrients and phytochemicals, Toxicology 189:1–20 (2003).PubMedCrossRefGoogle Scholar
  12. 12.
    B. Frei, and J. V. Higdon, Antioxidant activity of tea polyphenols in vivo: evidence from animal studies, J. Nutr. 133:3275S–3284S (2003).PubMedGoogle Scholar
  13. 13.
    J. M. Yuhas, M. E. Davis, D. Glover, et al., Circumvention of the tumor membrane barrier to WR-2721 absorption by reduction of the drug hydrophilicity, Int. J. Radiat. Oncol. 8:519–522 (1982).Google Scholar
  14. 14.
    D. Q. Brown, J. M. Yuhas, L. J. MacKensie, et al., Differential radioprotection of normal tissues by hydrophilic chemical protectors, Int. J. Radiat. Biol. 10:1581–1584 (1984).Google Scholar
  15. 15.
    G. L. Newton, J. A. Aguilera, T. Kim, et al., Transport of aminothiol radioprotectors into mammalian cells: passive diffusion versus mediated uptake. Radiat. Res. 146:206–215 (1996).PubMedCrossRefGoogle Scholar
  16. 16.
    V. Santini, and F. J. Giles, The potential of amifostine: from cytoprotectant to therapeutic agent, Haematologica 84:1035–1042 (1999).PubMedGoogle Scholar
  17. 17.
    J. M. Yuhas, S. M. J. Afzal, and V. Afzal, Variation in normal tissue responsiveness to WR-2721, Int. J. Radiat. Oncol. 10:1537–1539 (1984).CrossRefGoogle Scholar
  18. 18.
    H. I. Quiňones, A. F. List, and E. W. Gerner, Selective exclusion by the polyamine transporter as a mechanism for differential radioprotection of amifostine derivatives, Clin. Cancer Res. 8:1295–1300 (2002).PubMedGoogle Scholar
  19. 19.
    P. M. Calabro-Jones, J. A. Aguilera, J. F. Ward, et al., The limits to radioprotection of Chinese hamster V79 cells by WR-1065 under aerobic conditions, Radiat. Res. 149:550–559 (1998).PubMedCrossRefGoogle Scholar
  20. 20.
    C. R. Cully, and C. M. Spencer, An update on its clinical status as a cytoprotectant in patients with cancer receiving chemotherapy or radiotherapy and its potential therapeutic application in myelodysplasia syndrome, Drugs 61:641–684 (2001).CrossRefGoogle Scholar
  21. 21.
    J. S. Murley, Y. Kataoka, D. Cao, et al., Delayed radioprotection by NFκ;B-mediated induction of SOD2 (MnSOD) in SA-NH tumor cells after exposure to clinically used thiol-containing drugs, Radiat. Res. 162:536–546 (2004).PubMedCrossRefGoogle Scholar
  22. 22.
    J. S. Murley, Y. Kataoka, C. J. Weydert, et al., Delayed radioprotection by nuclear transcription factor κB-mediated induction of manganese superoxide dismutase in human microvascular endothelial cells after exposure to the free radical scavenger, WR1065, Free Rad. Biol. Med. 40:1004–1016 (2006).PubMedCrossRefGoogle Scholar
  23. 23.
    D. C. Wallace, The mitochondrial genome in human adaptive radiation and disease: on the road to therapeutics and performance enhancement, Gene 354:169–180 (2005).PubMedCrossRefGoogle Scholar
  24. 24.
    L. J. Marnett, Oxy radicals, lipid peroxidation and DNA damage, Toxicology 181:219–222 (2002).PubMedCrossRefGoogle Scholar
  25. 25.
    N. M. Gandhi, and C. K. K. Nair, Radiation protection by diethyldithiocarbamate: protection of membrane and DNA in vitro and in vivo against γ-irradiation, J. Radiat. Res. 45:175–180 (2004).PubMedCrossRefGoogle Scholar
  26. 26.
    N. M. Gandhi, U. V. Gopalaswamy, and C. K. K. Nair, Radiation protection by disulfiram: protection of membrane and DNA in vitro and in vivo against γ-radiation, J. Radiat. Res. 44:255–259 (2003).PubMedCrossRefGoogle Scholar
  27. 27.
    K. Shimoi, S. Masuda, B. Shen, et al., Radioprotective effects of antioxidative plant flavonoids in mice, Mutation Res. 350:153–161 (1996).PubMedGoogle Scholar
  28. 28.
    N. Cherdyntseva, A. Shishkina, I. Butorin, et al., Effect of tocopherol-monoglucoside (TMG), a water-soluble glycosylated derivate of vitamin E, on hematopoietic recovery in irradiated mice, J. Radiat. Res. 46:37–41 (2005).PubMedCrossRefGoogle Scholar
  29. 29.
    J. R. Woods, M. A. Plessinger, and R. K. Miller, Vitamins C and E: missing links in preventing preterm premature rupture of membranes. Am. J. Obstet. Gynecol. 185:5–10 (2001).PubMedCrossRefGoogle Scholar
  30. 30.
    K. N. Prasad, Rationale for using high-dose multiple dietary antioxidants as an adjunct to radiation therapy and chemotherapy, J. Nutr. 134:3182S–3183S (2004).PubMedGoogle Scholar
  31. 31.
    K. N. Prasad, Rationale for using multiple antioxidants in protecting humans against low doses of ionizing radiation, Br. J. Radiol. 78:485–492 (2005).PubMedCrossRefGoogle Scholar
  32. 32.
    L. Malakhova, V. G. Bezlepkin, V. Antipova, et al., The increase in mitochondrial DNA copy number in the tissues of γ-irradiated mice, Cell. Mol. Biol. Lett. 10:721–732 (2005).PubMedGoogle Scholar
  33. 33.
    S. P. LeDoux, G. L. Wilson, E. J. Beecham, T. Stevnsner, K. Wassermann, and V. A. Bohr, Repair of mitochondrial DNA after various types of DNA damage in Chinese hamster ovary cells, Carcinogenesis 13:1967–1973 (1992).PubMedCrossRefGoogle Scholar
  34. 34.
    G. L. Dianov, N. Souza-Pinto, S. G. Nyaga, T. Thybo, T. Stevnsner, V. A. Bohr, Base excision repair in nuclear and mitochondrial DNA, Prog. Nuc. Acid Res. Mol. Biol. 68:285–297 (2001).CrossRefGoogle Scholar
  35. 35.
    A. May, and V. A. Bohr, Gene-specific repair of γ-ray-induced DNA strand breaks in colon cancer cells: no coupling to transcription and no removal from the mitochondrial genome, Biochem. Biophys. Res. Commun. 269:433–437 (2000).PubMedCrossRefGoogle Scholar
  36. 36.
    H. Budworth, and G. L. Dianov, Mode of inhibition of short-patch base excision repair by thymine glycol within clustered DNA lesions, J. Biol. Chem. 278:9378–9381 (2003).PubMedCrossRefGoogle Scholar
  37. 37.
    H. Budworth, G. Matthewman, P. O’Neill, and G. L. Dianov, Repair of tandem base lesions in DNA by human cell extracts generates persisting single-strand breaks,J. Mol. Biol. 351:1020–1029 (2005).PubMedCrossRefGoogle Scholar
  38. 38.
    N. Yang, M. A. Chaudhry, and S. S. Wallace, Base excision repair by hNTH1 and hOGG1: a two edge sword in the processing of DNA damage in γ-irradiated human cells, DNA Repair 5:43–51 (2006).PubMedCrossRefGoogle Scholar
  39. 39.
    L. Tretter, É. Rónai, G. Szabados, et al., The effect of the radioprotector WR-2721 and WR-1065 on mitochondrial lipid peroxidation, Int. J. Radiat. Biol. 57:467–478 (1990).PubMedCrossRefGoogle Scholar
  40. 40.
    M. W. Epperly, C. A. Sikora, S. J. DeFilippi, et al., Manganese superoxide dismutase (SOD2) inhibits radiation-induced apoptosis by stabilization of the mitochondrial membrane, Radiat. Res. 157:568–577 (2002).PubMedCrossRefGoogle Scholar
  41. 41.
    R. I. Salganik, The benefits and hazards of antioxidants: controlling apoptosis and other protective mechanisms in cancer patients and the human population, J. Am. Coll. Nutr. 20:464S–472S (2001).PubMedGoogle Scholar
  42. 42.
    D. E. McClain, J. F. Kalinich, and N. Ramakrishnan, Trolox inhibits apoptosis in irradiated MOLT-4 lymphocytes, FASEB 9:1345–1354 (1995).Google Scholar
  43. 43.
    G. Hernández-Flores, P. C. Gómez-Contreras, J. R. Domínguez-Rodríguez, et al., γ-irradiation induced apoptosis in peritoneal macrophages by oxidative stress. Implications of antioxidants in caspase mitochondrial pathway, Anticancer Res. 25:4091–4100 (2005).PubMedGoogle Scholar
  44. 44.
    H. Kondo, S-H. Park, K. Watanabe, et al., Polyphenol (-)-epigallocatechin gallate inhibits apoptosis induced by irradiation in human HaCaT keratinocytes, Biochem. Biophys. Res. Commun. 316:59–64 (2004).PubMedCrossRefGoogle Scholar
  45. 45.
    N. N. Khodarev, Y. Kataoka, J. S. Murley, et al., Interaction of amifostine and ionizing radiation on transcriptional patterns of apoptotic genes expressed in human microvascular endothelial cells (HMEC), Int. J. Radiat. Oncol. Biol. Phys. 60:553–563 (2004).PubMedCrossRefGoogle Scholar
  46. 46.
    H. B. Stone, C. N. Coleman, M. S. Anscher, et al., Effects of radiation on normal tissue: consequences and mechanisms, Lancet Oncol. 4:529–36 (2003).PubMedCrossRefGoogle Scholar
  47. 47.
    M. E. C. Robbins, and W. Zhao, Chronic oxidative stress and radiation-induced late normal tissue injury: a review, Int. J. Radiat. Biol. 80:251–59 (2004).PubMedCrossRefGoogle Scholar
  48. 48.
    C. Borek, and W. Troll, Modifiers of free radicals inhibit in vitro the oncogenic actions of x-rays, bleomycin, and the tumor promoter 12-O-tetradecanoylphorbol 13-acetate, Proc. Natl. Acad. Sci. 80:1304–307 (1983).PubMedCrossRefGoogle Scholar
  49. 49.
    M. S. Anscher, L. Chen, Z. Rabbani, et al., Recent progress in defining mechanisms and potential targets for prevention of normal tissue injury after radiation therapy, Int. J. Radiat. Oncol. Biol. Phys. 62:255–259 (2005).PubMedCrossRefGoogle Scholar
  50. 50.
    M. Mitjans, V. Martínez, J. del Campo, et al., Novel epicatechin derivatives with antioxidant activity modulate interleukin-1β release in lipopolysaccharide-stimulated human blood, Bioorg. Med. Chem. Lett. 14:5031–5034 (2004).PubMedCrossRefGoogle Scholar
  51. 51.
    J-P. Marier, K. Chen, P. Prince, G. Scott, J. R. E. del Castillo, and P. Vachon, Production of ex vivo lipopolysaccharide-induced tumor necrosis factor-α, interleukin-1β, and interleukin-6 is suppressed by trans-resveratrol in a concentration-dependent manner, Can. J. Vet. Res. 69:151–154 (2005).PubMedGoogle Scholar
  52. 52.
    R. Aneja, K. Odoms, A. G. Denenberg, and H. R. Wong, Theaflavin, a black tea extract, is a novel anti-inflammatory compound, Crit. Care Med. 32:2097–2103 (2004).PubMedCrossRefGoogle Scholar
  53. 53.
    J. J. Haddad, and C. S. Fahlman, Redox- and oxidant-mediated regulation of interleukin-10: an anti-inflammatory, antioxidant cytokine? Biochem. Biophys. Res. Commun. 297:163–176 (2002).PubMedCrossRefGoogle Scholar
  54. 54.
    M. W. Epperly, J. Bray, S. Kraeger, et al., Prevention of late effects of irradiation lung damage by manganese superoxide dismutase gene therapy, Gene Ther. 5:196–208 (1998).PubMedCrossRefGoogle Scholar
  55. 55.
    Z. Vujaskovic, I. Batinic-Haberle, Z. N. Rabbani, et al., A small molecule weight catalytic metalloporphyrin antioxidant with superoxide dismutase (SOD) mimetic properties protects lungs from radiation-induced injury, Free Rad. Biol. Med. 33:857–863 (2002).PubMedCrossRefGoogle Scholar
  56. 56.
    J-L. Lefaix, S. Delanian, J-J. Leplat, et al., Successful treatment of radiation-induced fibrosis using Cu/Zn-SOD and Mn-SOD: an experimental study, Int. J. Radiat. Oncol. Biol. Phys. 35:305–312 (1996).PubMedCrossRefGoogle Scholar
  57. 57.
    J-L. Lefaix, S. Delanian, M-C. Vozenin, et al., Striking regression of subcutaneous fibrosis induced by high doses of gamma rays using a combination of pentoxifylline and α-tocopherol: an experimental study, Int. J. Radiat. Oncol. Biol. Phys. 43:839–847 (1999).PubMedCrossRefGoogle Scholar
  58. 58.
    S. Delanian, R. Porcher, S. Balla-Mekias, et al., Randomized, placebo-controlled trial of combined pentoxifylline and tocopherol for regression of superficial radiation-induced fibrosis, J. Clin. Oncol. 21:2545–2550 (2003).PubMedCrossRefGoogle Scholar
  59. 59.
    P. Okunieff, E. Augustine, J. E. Hicks, et al., Pentoxifylline in the treatment of radiation-induced fibrosis, J. Clin. Oncol. 22, 2207–2213 (2004).PubMedCrossRefGoogle Scholar
  60. 60.
    S. Delanian, M. Martin, A. Bravard, et al., Cu/Zn superoxide dismutase modulates phenotypic changes in cultured fibroblasts from human skin with chronic radiotherapy damage, Radiother. Oncol. 58:325–331 (2001).PubMedCrossRefGoogle Scholar
  61. 61.
    J. Eastgate, J. Moreb, H. S. Nick, et al., A role for manganese dismutase in radioprotection of hematopoietic stem cells by interleukin-1, Blood 81:639–646 (1993).PubMedGoogle Scholar
  62. 62.
    J. Moreb, and J. R. Zucali, The therapeutic potential of interleukin-1 and tumor necrosis factor on hematopoietic stem cells, Leuk. Lymphoma 8:267–275 (1992).PubMedCrossRefGoogle Scholar
  63. 63.
    C. Muňoz, M. C. Castellanos, A. Alfranca, et al., Transcriptional up-regulation of intracellular adhesion molecule-1 in human endothelial cells by the antioxidant pyrrolidine dithiocarbamate involves the activation of activating protein-1, J. Immunol. 157:3587–3597 (1996).PubMedGoogle Scholar
  64. 64.
    M. Walther, W. Kaffenberger, and D. van Beuningen, Influence of clinically used antioxidants on radiation-induced expression of intracellular cell adhesion molecule-1 on HUVEC, Int. J. Radiat. Biol. 75:1317–1325 (1999).PubMedCrossRefGoogle Scholar
  65. 65.
    K. Otsuka, T. Koana, H. Tauchi, and K. Sakai, Activation of antioxidant enzymes induced by low-dose-rate whole-body γ irradiation: adaptive response in terms of initial DNA damage, Radiat. Res. 166, 474–478 (2006).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Paul Okunieff
    • 1
  • Steven Swarts
    • 1
  • Peter Keng
    • 1
  • Weimin Sun
    • 1
  • Wei Wang
    • 1
  • Jung Kim
    • 1
  • Shanmin Yang
    • 1
  • Hengshan Zhang
    • 1
  • Chaomei Liu
    • 1
  • Jacqueline P. Williams
    • 1
  • Amy K. Huser
    • 1
  • Lurong Zhang
    • 1
  1. 1.Department of Radiation OncologyUniversity of Rochester Medical CenterRochester

Personalised recommendations