Strikingly High Respiratory Quotients: A Further Characteristic of the Tumor Pathophysiome

  • Peter Vaupel
Part of the Advances In Experimental Medicine And Biology book series (AEMB, volume 614)


Conspicuously high respiratory quotients (RQs) are found in solid tumors in vivo. RQs in the range between 1.29 and 1.95 neither reflect the degree of substrate oxidation by tumor cells nor indicate the types of fuels involved in metabolic processes. Instead, such tumor RQs most probably are caused by (a) channeling of glycolytic end-products into lipogenesis, and by (b) CO2 release from the tumor following extracellular buffering of H+ -inos by bicarbonate. H+ -inos exported from the intracellular space into the interstitial compartment titrate extracellular bicarbonate to CO2 and H2O with the aid of the ectoenzyme carbonic anhydrase IX, which is activated at low pH. Strikingly high (RQs) may thus be a further characteristic of the tumor microenvironment and of the tumor (patho-)physiome, the latter quantitatively describing the pathophysiologic characteristics of tumor cells and solid tumors.


Ehrlich Ascites Tumor Cell Interstitial Compartment Cellular Glucose Uptake Voluntary Hyperventilation Extracellular Buffer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Thews and P. Vaupel, Autonomic Functions in Human Physiology (Springer, Berlin, Heidelberg, 1985).Google Scholar
  2. 2.
    W.F. Boron, Ventilation and perfusion of lungs, in: Medical Physiology, edited by W.F. Boron and E.L. Boulpaep (Saunders, Philadelphia, 2003).Google Scholar
  3. 3.
    M. Löffler and F. Schneider, Lipogenesis in Ehrlich ascites tumor cells under anaerobic culture conditions, J. Cancer Res. Clin. Oncol. 95, 115–122 (1979).PubMedCrossRefGoogle Scholar
  4. 4.
    F.P. Kuhajda, Fatty acid synthase and cancer: New application of an old pathway, Cancer Res. 66(12), 5977–5980 (2006).PubMedCrossRefGoogle Scholar
  5. 5.
    K. Uyeda and J.J. Repa, Carbohydrate response element binding protein, ChREBP, a transcription factor coupling hepatic glucose utilization and lipid synthesis, Cell Metabol. 4(2), 107–110 (2006).CrossRefGoogle Scholar
  6. 6.
    G. Hatzivassiliou, F. Zhao, D.E. Bauer, C. Andreadis, A.N. Shaw, D. Dhanak, S.R. Hingorani, D.A. Tuveson, and C.B. Thompson, ATP citrate lyase inhibition can suppress tumor cell growth, Cancer Cell. 8(4), 311–321 (2005).PubMedCrossRefGoogle Scholar
  7. 7.
    T. Bui and C.B. Thompson, Cancer’s sweet tooth, Cancer Cell. 9(6), 419–420 (2006).PubMedCrossRefGoogle Scholar
  8. 8.
    P. Vaupel, Atemgaswechsel und Glucosestoffwechsel von Implantationstumoren (DS-Carcinosarkom) in vivo, Funktionsanalyse biolog. Systeme 1, 1–138 (1974).Google Scholar
  9. 9.
    F. Kallinowski, K.H. Schlenger, S. Runkel, M. Kloes, M. Stohrer, P. Okunieff, and P.Vaupel, Tumor blood flow: The principal modulator of oxidative and glycolytic metabolism, and of the metabolic micromilieu of human tumor xenografts in vivo, Int. J. Cancer 44, 266–272 (1989).PubMedCrossRefGoogle Scholar
  10. 10.
    S. Runkel, Durchblutung, O2-Verbrauch und Substrat-Umsatzraten xenotransplantierter menschlicher Mammakarzinome, Dr. med. Thesis, Faculty of Medicine, University of Mainz (1988).Google Scholar
  11. 11.
    F. Dickens and F. Simer, The metabolism of normal and tumour tissue. II. The respiratory quotient, and the relationship of respiration of glycolysis, Biochem. J. 24, 1301–1326 (1930).PubMedGoogle Scholar
  12. 12.
    O. Warburg, The Metabolism of Tumors (Arnold Constable, London, 1930).Google Scholar
  13. 13.
    O. Warburg, On the origin of cancer cells, Science 123, 309–315 (1956).PubMedCrossRefGoogle Scholar
  14. 14.
    S. Weinhouse, On respiratory impairment in cancer, Science 124, 267–268 (1956).PubMedCrossRefGoogle Scholar
  15. 15.
    X.L. Zu and M. Guppy, Cancer metabolism: facts, fantasy, and fiction, Biochem. Biophys. Res. Comm. 313, 459–465 (2004).PubMedCrossRefGoogle Scholar
  16. 16.
    V.R. Fantin, J. St-Pierre, and P. Leder, Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance, Cancer Cell. 9(6), 425–434 (2006).PubMedCrossRefGoogle Scholar
  17. 17.
    J. Piiper, Physiologie der Atmung, in: Atmung, Physiologie des Menschen, Vol. 6, edited by O.H. Gauer, K. Kramer, and R. Jung (Urban & Schwarzenberg, München, Berlin, Wien, 1975), pp. 1–159.Google Scholar
  18. 18.
    P. Vaupel, Tumor microenvironmental physiology and its implications for radiation oncology, Semin. Radiat. Oncol. 14(3), 198–206 (2004).PubMedCrossRefGoogle Scholar
  19. 19.
    P. Vaupel, Abnormal microvasculature and defective microcirculatory function in solid tumors, in: Vascular-targeted Therapies in Oncology, edited by D.W. Siemann (Wiley & Sons, Chichester, UK, 2006), pp. 9–29.CrossRefGoogle Scholar
  20. 20.
    P.M. Gullino, Techniques for the study of tumor physiopathology, in: Methods in Cancer Research, edited by H. Busch (Academic Press, New York, 1970), pp. 45–91.Google Scholar
  21. 21.
    P.M. Gullino, Extracellular compartments of solid tumors, in: Cancer Vol. 3, edited by E.F. Becker (Plenum, New York, 1975), pp. 327–354.Google Scholar
  22. 22.
    P.J. Hunter and T.K. Borg, Integration from proteins to organs: the Physiome Project, Nat. Rev. Mol. Cell Biol. 4(3), 237–243 (2003).PubMedCrossRefGoogle Scholar
  23. 23.
    J.B. Bassingthwaighte, Strategies for the Physiome Project, Ann. Biomed. Engin. 28(8), 1043–1058 (2000).CrossRefGoogle Scholar
  24. 24.
    S. Mazurek and E. Eigenbrodt, The tumor metabolome, Anticancer Res. 23, 1149–1154 (2003).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Peter Vaupel
    • 1
  1. 1.Institute of Physiology and Pathophysiology, University of MainzDuesbergweg 6Germany

Personalised recommendations