Reliability Issues in Deep Deep Submicron Technologies: Time-Dependent Variability and its Impact on Embedded System Design

  • Antonis Papanikolaou
  • Hua Wang
  • Miguel Miranda
  • Francky Catthoor
  • Wim Dehaene
Part of the IFIP International Federation for Information Processing book series (IFIPAICT, volume 249)

Technology scaling has traditionally offered advantages to embedded systems in terms of reduced energy consumption and die cost as well as increased performance, without requiring significant additional design effort. Scaling past the 45 nm technology node, however, brings a number of problems whose impact on system level design has not been evaluated yet. Random intra-die process variability, reliability degradation mechanisms and their combined impact on the system level parametric quality metrics are prominent issues that will need to be tackled in the next few years. Dealing with these new challenges will require a paradigm shift in the system level design phase.


Technology Node Circuit Level Process Variability System Level Design Progressive Degradation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Maex, K., Stucchi, M., Bamal, M., Grossar, E., Dehaene, W., Papanikolaou, A., Miranda, M., Catthoor, F.: Technology aware design and design aware technology. Proc. of Intl. Conf. on Integrated Circuit Design and Technology, 77-81 (2005)Google Scholar
  2. 2.
    Groeseneken, G., Degraeve, R., Kaczer, B., Roussel, R.: Recent trends in reliability assessment of advanced CMOS technologies. Intl. Conf. on Microelectronic Test Structures, 81-88 (2005)Google Scholar
  3. 3.
    Reddy, V., Krishnan, A., Marshall, A., Rodriguez, J., Natarajan, S., Rost, T., Kirshnan, S.: Impact of Negative Bias Temperature Instability on Digital Circuit Reliability. Intl. Reliability Physics Symp., 248-254 (2002)Google Scholar
  4. 4.
    Bruynseraede, C., Tokei, Z., Iacopi, F., Beyer, G., Michelon, J., Maex, K.: The impact of scaling on interconnect reliability. Intl. Reliability Physics Symp., 7-17 (2005)Google Scholar
  5. 5.
    Tokei, Z., Li, Y., Beyer, G.: Reliability challenges for copper low-k dielectrics and copper diffusion barriers. J. of Microelectronics Reliability, 1436-1442 (2005)Google Scholar
  6. 6.
    Schroder, D., Babcock, J.: Negative bias temperature instability: road to cross in deep submicron silicon semiconductor manufacturing. J. Applied Physics, 94, 1-18 (2003)CrossRefGoogle Scholar
  7. 7.
    Stathis, J.: Physical and predictive models of ultrathin oxide reliability in CMOS devices and circuits. IEEE Trans. on Device and Materials Reliability, 1, 43-59 (2001)CrossRefGoogle Scholar
  8. 8.
    Kaczer, B., Degraeve, R., O’Connor, R., Roussel, P., Groeseneken, G.:Implications of progressive wear-out for lifetime extrapolation of ultra-thin SiON films. Intl. Electron Devices Meeting, 713-716 (2004)Google Scholar
  9. 9.
    International Technology Roadmap for Semiconductors, Interconnect chapter, (2005)
  10. 10.
    Croon, J., Storms, G., Winkelmeier, S., Pollentier, I., Ercken, M., Decoutere, S., Sansen, W., Maes, H.: Line Edge Roughness: Characterisation, Modelling and Im-pact on Device Behaviour. Intl. Electron Device Meeting, 307-310 (2002)Google Scholar
  11. 11.
    Ramadurai, V., Rohrer, N., Gonzalez, C.: SRAM operational voltage shifts in the presence of gate oxide defects in 90 nm SOI. Intl. Reliability Physics Symp., 270-273 (2006)Google Scholar
  12. 12.
    Kaczer, B., Degraeve, R., Crupi, F., De Keersgieter, A., Groeseneken, G.:“Understanding nMOSFET characteristics after soft breakdown and their dependence on the breakdown location. European Solid-State Device Research, 139-142 (2002)Google Scholar
  13. 13.
    Kaczer, B., Degraeve, R., Rasras, M., De Keersgieter, A., Van de Mieroop, K., Groeseneken, G.: Analysis and modeling of a digital CMOS circuit operation and reliability after gate oxide breakdown: a case study. Microelectronics Reliability, 42, 555-564 (2002)CrossRefGoogle Scholar
  14. 14.
    Wang, H., Miranda, M., Catthoor, F., Dehaene, W.: On the combined impact of soft and medium gate oxide breakdown and process variability on the parametric figures of SRAM components. Intl. Wsh. on Memory Technology, Design and Testing, 71-76 (2006)Google Scholar
  15. 15.
    Carter, J., Ozev, S., Sorin, D.: Circuit-Level Modeling for Concurrent Testing of Operational Defects due to Gate Oxide Breakdown. Design Automation and Test in Europe, 300-305 (2005)Google Scholar
  16. 16.
    Avellan, A., Krautscneider, W.: Impact of soft and hard breakdown on analog and digital circuits. IEEE Trans. on Device and Materials Reliability, 4, 676-680 (2004)CrossRefGoogle Scholar
  17. 17.
    Najm, F.: On the need for statistical timing analysis. Design Automation Conf., 764-765 (2005)Google Scholar
  18. 18.
    Mani, M., Orshansky, M.: A new statistical optimization algorithm for gate sizing. Intl. Conf. on Computer Design, 272-277 (2004)Google Scholar
  19. 19.
    Tschanz, J., Kao, J., Narendra, S., Nair, R., Antoniadis, D., Chandrakasan, A., De, V.: Adaptive body bias for reducing impacts of die-to-die and within-die parameter variations on microprocessor frequency and leakage. IEEE Journal of Solid-State Circuits, 37, 1396-1402 (2002)CrossRefGoogle Scholar
  20. 20.
    Viswewariah, C.: Death, taxes and failing chips. Design Automation Conference, 343-347 (2003)Google Scholar
  21. 21.
    Keutzer, K., Orshansky, M.: From blind certainty to informed uncertainty. Wsh. on Timing Issues in the Specification and Synthesis of Digital Systems (TAU), 37-41 (2002)Google Scholar
  22. 22.
    Kang, K., Paul, B., Roy, K.: Statistical timing analysis using levelized covariance propagation. Design Automation and Test in Europe, 764-769 (2005)Google Scholar
  23. 23.
    Austin, T., Blaauw, D., Mudge, T., Flautner, K.: Making typical silicon matter with Razor. IEEE Computer, 37, 57-65 (2004)Google Scholar
  24. 24.
    Sparso, J., Furber, S.: Principles of Asynchronous Circuit Design: A Systems Per-spective. Kluwer Academic Publishers (2001)Google Scholar
  25. 25.
    Iyer, R., Nakka, N., Kalbarczyk, Z., Mitra, S.: Recent advances and new avenues in hardware-level reliability support. IEEE Micro, 25, 18-29 (2005)CrossRefGoogle Scholar
  26. 26.
    Brahme, D., Abraham, J.: Functional testing of microprocessors, IEEE Trans. on Computers, C-33, 475-485 (1984)CrossRefGoogle Scholar
  27. 27.
    Wang, H., Miranda, M., Dehaene, W., Catthoor, F., Maex, K.: Impact of deep submicron (DSM) process variation effects in SRAM design. Design Automation and Test in Europe, 914-919 (2005)Google Scholar
  28. 28.
    Blaauw, D., Chopra, K.: CAD tools for variation tolerance. Design Automation Conference, 766 (2005)Google Scholar
  29. 29.
    Papanikolaou, A., Grabner, T., Miranda, M., Roussel, P., Catthoor, F.: Yield Pre-diction for Architecture Exploration in Nanometer Technology Nodes: A Model and Case Study for Memory Organizations. Intl. Symp. on HW/SW Co-design and Sys-tem Synthesis, 253-258 (2006)Google Scholar
  30. 30.
    Grossar, E., Stucchi, M., Maex, K., Dehaene, W.: Statistically aware SRAM mem-ory array design. Intl. Symposium on Quality Electronic Design, 25-30 (2006)Google Scholar
  31. 31.
    Wang, H., Miranda, M., Papanikolaou, A., Catthoor, F., Dehaene, W.: Variable tapered Pareto buffer design and implementation allowing run-time configuration for low power embedded SRAMs. IEEE Trans. on VLSI Systems, 13, 1127-1135 (2005)CrossRefGoogle Scholar
  32. 32.
    Papanikolaou, A., Lobmaier, F., Wang, H., Miranda, M., Catthoor, F.: A system-level methodology for fully compensating process variability impact of memory or-ganizations in periodic applications. Intl. Symp. on HW/SW Co-design and System Synthesis, 117-122 (2005)Google Scholar
  33. 33.
    Papanikolaou, A., Starzer, F., Lobmaier, F., Miranda, M., Catthoor, F., Huemer, M.: A system architecture case study for efficient calibration of memory organi-zations under process variability. Wsh. on Application-specific Processors, 42-49 (2005)Google Scholar
  34. 34.
    Sanz, C., Papanikolaou, A., Miranda, M., Prieto, M., Catthoor, F.: System-level process variability compensation on memory organizations of dynamic applications: a case study. Intl. Symp. On Quality Electronic Design, 376-382 (2006)Google Scholar

Copyright information

© International Federation for Information Processin 2008

Authors and Affiliations

  • Antonis Papanikolaou
    • 1
  • Hua Wang
    • 1
  • Miguel Miranda
    • 1
  • Francky Catthoor
    • 1
  • Wim Dehaene
    • 2
  1. 1.IMEC vzwBelgium
  2. 2.ESAT DeptKatholieke Universiteit LeuvenBelgium

Personalised recommendations