Human++: Emerging Technology for Body Area Networks

  • Julien Penders
  • Bert Gyselinckx
  • Ruud Vullers
  • Olivier Rousseaux
  • Mladen Berekovic
  • Michael De Nil
  • Chris Van Hoof
  • Julien Ryckaert
  • Refet Firat Yazicioglu
  • Paolo Fiorini
  • Vladimir Leonov
Part of the IFIP International Federation for Information Processing book series (IFIPAICT, volume 249)

This paper gives an overview of results of the Human++ research program [1]. This research aims to achieve highly miniaturized and nearly autonomous sensor systems that assist our health and comfort. It combines expertise in wireless ultra-low power communications, packaging and 3D integration technologies, MEMS energy scavenging techniques and low-power design techniques. Key words. BAN, microsystem, wireless, autonomous, integration


Power Consumption Sensor Node Wireless Sensor Network Federal Communication Commission Wireless Body Area Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
  2. [2]
    R. Schmidt et al., “Body Area Network BAN, a key infrastructure element for patient-centered medical applications”, Biomed Tech (Berl). 2002;47 suppl 1 pt 1:365-8CrossRefGoogle Scholar
  3. [3]
  4. [4]
  5. [5]
  6. [6]
  7. [7]
    B.W. Cook et al., “An ultra-low power 900 MHz RF Transceiver for wireless sensor networks in 0.13 um cmos with 400 mV supply and an integrated passive RX front-end”, ISSCC, 2006, pp. 1460-1461Google Scholar
  8. [8]
    Y.H. Chee, A.M. Niknejad, and J.M. Rabaey, “An ultra-low power MEMS-based two- channel transceiver for wireless sensor networks,” Symposium on VLSI Circuits, June 2004, pp. 20-23Google Scholar
  9. [9]
    M.Z. Win and R.A. Scholtz. Impulse radio: how it works. In IEEE Communications Letters, pp. 36-38, February 1998Google Scholar
  10. [10]
    Federal Communications Commission (FCC). Revision of part 15 regarding ultra- wideband transmission systems. First Report and Order, ET Docket, 98-153, FCC 02-48, adopted Feb. 2002, released Apr. 2002, available at
  11. [11]
  12. [12]
    standard draft proposal. IEEE 802.15.4a available at
  13. [13]
    Y.H. Choi. Gated UWB pulse signal generation. In IEEE Joint International Workshop of UWBST and IWUWBS, pp. 122-124, May 2004Google Scholar
  14. [14]
    J. Ryckaert, M. Badaroglu, C. Desset, V. de Heyn, G. Van der Plas, P. Wambacq, B. Van Poucke, and S. Donnay. Carrier-based uwb impulse radio: Simplicity, flexibility, and pulser implementation in 0.18µm cmos. International Conference on Ultrawideband, ICU 2005, 2005Google Scholar
  15. [15]
    R. Blazquez, F.S. Lee, D.D. Wentzloff, B. Ginsburg, J. Powell, and A.P. Chandrakasan. Direct conversion pulsed uwb transceiver architecture. Proc. of Design, Automation and Test in Europe, March 2005Google Scholar
  16. [16]
    J. Ryckaert, M. Badaroglu, V. De Heyn, G. Van der Plas, P. Nuzzo, A. Baschirotto, S. D’Amico, C. Desset, H. Suys, M. Libois, B. Van Poucke, P. Wambacq, and B. Gyselinckx. A 16mA UWB 3-to-5Ghz 20Mpulses/s quadrature analog correlation  receiver in 0.18µm CMOS. In ISSCC Digest of Technical Papers, pp. 114-115, February 2006Google Scholar
  17. [17]
    J. Ryckaert, P. De Doncker, R. Meys, A. de Le Hoye, and S. Donnay, “Channel model for wireless communication around the human body”, Electronics Letters, Vol. 40, Nr. 9, pp. 543-544, April 2004CrossRefGoogle Scholar
  18. [18]
    M. Verhelst, W. Vereecken, M. Steyaert, and W. Dehaene. Architectures for low power ultra-wideband radio receivers in the 3.1-5GHz band for data rates < 10Mbps. In ISLPED’04, International Symposium on Low Power Electronics and Design, pp. 280-285, August 2004Google Scholar
  19. [19]
    S. Stoukatch, M. Ho, K. Vaesen, T. Webers, G. Carchon, W. De Raedt, E. Beyne, and J. De Baets, “Miniaturization using 3-D stack structure for SIP application”, Proc. SMTA (Surface Mount Technology Association) International Conference, 21-29 September 2003; Chicago.Google Scholar
  20. [20]
    TI MSP430F149,
  21. [21]
    Nordic nRF2401,
  22. [22]
    V. Leonov, P. Fiorini, S. Sedky, T. Torfs, and C. Van Hoof, “Thermoelectric MEMS generators as a power supply for a body area network”. Proc. 13-th Int. Conf. Solid-State Sensors, Actuators and Microsystems (Transducers’05), Seoul, Korea, June 5-9, 2005, pp. 291-294Google Scholar
  23. [23]
    V. Leonov, T. Torfs, P. Fiorini, and C. Van Hoof, “Thermoelectric converters of human warmth for self-powered wireless sensor nodes”. IEEE Sensors Journal, 2007 (in press)Google Scholar
  24. [24]
    T. Torfs, V. Leonov, B. Gyselinckx, and C. Van Hoof, “Body-Heat Powered Autonomous Pulse Oximeter”, proceedings, IEEE Sensors, 2006, Korea, in pressGoogle Scholar
  25. [25]
    S.J. Roundy, “Energy Scavenging for Wireless Sensor Nodes with a Focus on Vibration to Electricity Conversion”, PhD Thesis, UC Berkeley, 2003Google Scholar
  26. [26]
    B. Köhler, H. Carsten, and R. Orglmeister: The Principles of Software QRS Detection, Feb. 2002, IEEE Engineering in Medicine and Biology, 42-57Google Scholar
  27. [27]
    T.R. Halfhill: Silicon Hive Breaks Out, Dec.1st2003, Microprocessor Report,
  28. [28]
    J. Pan and W.J. Tompkins: HA Real-Time QRS Detection Algorithm, 1985, IEEE Transactions Biomedical Engineering, BME-32(3): 230-236CrossRefGoogle Scholar
  29. [29]
    M. Tubasihat and S. Madria, “Sensor networks: an overview”, IEEE Potentials, 2003, Vol. 22(2), 20-23CrossRefGoogle Scholar
  30. [30]
    R.F. Yazicioglu, P. Merken, and C. Van Hoof, “Integrated Low-Power 24-Channel EEG Front-End”, IEE Electronics Letters, Vol. 41, iss. 8, pp. 457-458, Apr. 2005CrossRefGoogle Scholar
  31. [31]
    R.F. Yazicioglu, P. Merken, R. Puers, and C. Van Hoof, “A 60 µW 60nV/√Hz Readout Front-End for Portable Biopotential Acquisition Systems,” IEEE J. Solid-State Circuits, 2007Google Scholar
  32. [32]
    A.A. Ahmed, “A Survey on Network Protocols for Wireless Sensor Networks”, Information Technology: Research and Education, 2003 proceedings, pp. 301-305Google Scholar
  33. [33]
    M.A.M. Vieira et al., “Survey on wireless sensor network devices”, IEEE Emerging Technologies and Factory Automation 2003 proceedings, Vol. 1, pp. 537-544Google Scholar
  34. [34]
    B.A. Warneke et al., “An autonomous 16 mm3 solarpowered node for distributed wireless sensor networks”, IEEE Sensors 2002 proceedings, Vol. 2, pp. 1510-1515Google Scholar
  35. [35]
    T. Torfs, S. Sanders, C. Winters, S. Brebels, and C. Van Hoof, “Wireless network of autonomous environmental sensors”, Proceedings of IEEE Sensors 2004, Vienna, 24-27 October 2004.Google Scholar

Copyright information

© International Federation for Information Processin 2008

Authors and Affiliations

  • Julien Penders
    • 1
  • Bert Gyselinckx
    • 1
  • Ruud Vullers
    • 1
  • Olivier Rousseaux
    • 1
  • Mladen Berekovic
    • 1
  • Michael De Nil
    • 2
  • Chris Van Hoof
    • 3
  • Julien Ryckaert
    • 3
  • Refet Firat Yazicioglu
    • 3
  • Paolo Fiorini
    • 3
  • Vladimir Leonov
    • 3
  1. 1.IMEC Nl/Holst CentreNetherlands
  2. 2.Technische Universiteit EindhovenNetherlands
  3. 3.IMECBelgium

Personalised recommendations