Comparison of an Æthereal Network on Chip and Traditional Interconnects - Two Case Studies

  • Arno Moonen
  • Chris Bartels
  • Marco Bekooij
  • René van den Berg
  • Harpreet Bhullar
  • Kees Goossens
  • Patrick Groeneveld
  • Jos Huisken
  • Jef van Meerbergen
Part of the IFIP International Federation for Information Processing book series (IFIPAICT, volume 249)

The growing complexity of multiprocessor systems on chip make the integration of Intellectual Property (IP) blocks into a working system a major challenge. Networks-on-Chip (NoCs) facilitate a modular design approach which addresses the hardware challenges in designing such a system. Guaranteed communication services, offered by the Æthereal NoC, address the software challenges by making the system more robust and easier to design. This paper describes two existing bus-based reference designs and compares the original interconnects with an Æthereal NoC. We show through these two case study implementations that the area cost of the NoC, which is dominated by the number of network connections, is competitive with traditional interconnects. Furthermore, we show that the latency in the NoC-based design is still acceptable for our application.


Intellectual Property Buffer Size Good Effort Slot Allocation Digital Video Broadcasting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    ARM. Multi-layer AHB. overview., 2001.Google Scholar
  2. 2.
    H. Bhullar, R. van den Berg, J. Josten, and F. Zegers. Serving digital radio and audio process-ing requirements with sea-of-dsps for automotive applications the philips way. In Proc. GSPx Conference, 2004.Google Scholar
  3. 3.
    European Standard (EN) 300 744 V1.5.1. Digital Video Broadcasting (DVB); Framing struc-ture, channel coding and modulation for terrestrial television.Google Scholar
  4. 4.
    O. P. Gangwal, A. R ădulescu, K. Goossens, S. Gonz ález Pestana, and E. Rijpkema. Build-ing predictable systems on chip: An analysis of guaranteed communication in the Æthereal network on chip. In: P. van der Stok, editor, Dynamic and Robust Streaming In And Be-tween Connected Consumer-Electronics Devices, volume 3 of Philips Research Book Series, chapter 1, pages 1-36. Springer, 2005.Google Scholar
  5. 5.
    S. Gonz ález Pestana, E. Rijpkema, A. R ădulescu, K. Goossens, and O. P. Gangwal. Cost-performance trade-offs in networks on chip: A simulation-based approach. In Proc. Design, Automation and Test in Europe Conference and Exhibition (DATE), pages 764-769, Wash-ington, DC, USA, Feb. 2004. IEEE Computer Society.CrossRefGoogle Scholar
  6. 6.
    K. Goossens, J. Dielissen, O. P. Gangwal, S. Gonz ález Pestana, A. R ădulescu, and E. Rijp- kema. A design flow for application-specific networks on chip with guaranteed performance to accelerate SOC design and verification. In Proc. Design, Automation and Test in Europe Conference and Exhibition (DATE), pages 1182-1187, Washington, DC, USA, Mar. 2005. IEEE Computer Society.Google Scholar
  7. 7.
    K. Goossens, J. Dielissen, and A. R ădulescu. The Æthereal network on chip: Concepts, architectures, and implementations. IEEE Design and Test of Computers, 22(5): 414-421, Sept-Oct 2005.CrossRefGoogle Scholar
  8. 8.
    K. Goossens, J. Dielissen, J. van Meerbergen, P. Poplavko, A. R ădulescu, E. Rijpkema, E. Waterlander, and P. Wielage. Guaranteeing the quality of services in networks on chip. In A. Jantsch and H. Tenhunen, editors, Networks on Chip, chapter 4, pages 61-82. Kluwer Academic Publishers, Hingham, MA, USA, 2003.Google Scholar
  9. 9.
    P. Gruijters, K. Koch, and G. Burns. Flexible embedded processors for developing multi-standard broadcast receivers. In Proc. GSPx Conference, 2004.Google Scholar
  10. 10.
    A. Hansson, K. Goossens, and A. R ădulescu. A unified approach to constrained mapping and routing on network-on-chip architectures. In Int’l Conf. on Hardware/Software Codesign and System Synthesis (CODES+ISSS), pages 75-80, Sept. 2005.Google Scholar
  11. 11.
    I. Held and B. Vandewiele. Avispa ch - embedded communications signal processor for multi-standard digital television. In Proc. GSPx Conference, 2006.Google Scholar
  12. 12.
    P. Martin. A comparison of network-on-chip and busses. Technical report, white paper downloadable from the Arteris website (, 2005.
  13. 13.
    A. Moonen, M. Bekooij, and J. van Meerbergen. Timing analysis model for network based multiprocessor systems. In Proc. ProRISC, 15th annual Workshop of Circuits, System and Signal Processing, 2004.Google Scholar
  14. 14.
    Philips Semiconductors. Device Transaction Level (DTL) Protocol Specification. Version 2.2, July 2002.Google Scholar
  15. 15.
    U. Reimers. DVB-The family of international standards for digital video broadcasting. Springer-Verlag, 2nd edition, 2005.Google Scholar
  16. 16.
    A. R ădulescu, J. Dielissen, S. Gonz ález Pestana, O. P. Gangwal, E. Rijpkema, P. Wielage, and K. Goossens. An efficient on-chip network interface offering guaranteed services, sharedmemory abstraction, and flexible network programming. IEEE Transactions on CAD of Integrated Circuits and Systems, 24(1):4-17, Jan. 2005.CrossRefGoogle Scholar
  17. 17.
    M. Sgroi, M. Sheets, A. Mihal, K. Keutzer, S. Malik, J. Rabaey, and A. Sangiovanni-Vincentelli. Addressing the system-on-a-chip interconnect woes through communication-based design. In Proc. Design Automation Conference (DAC), pages 667-672, June 2001.Google Scholar
  18. 18.
    R. van den Berg and H. Bhullar. Next generation philips digital car radios, based on a sea- of-dsp concept. In Proc. GSPx Conference, 2004.Google Scholar
  19. 19.
    P. Wielage, E. J. Marinissen, and C. Wouters. Design and DFT of a high-speed area-efficient embedded asynchronous FIFO. In Proc. Design, Automation and Test in Europe Conference and Exhibition (DATE), 2007.Google Scholar

Copyright information

© International Federation for Information Processin 2008

Authors and Affiliations

  • Arno Moonen
    • 1
  • Chris Bartels
    • 1
  • Marco Bekooij
    • 2
  • René van den Berg
    • 2
  • Harpreet Bhullar
    • 2
  • Kees Goossens
    • 2
  • Patrick Groeneveld
    • 3
  • Jos Huisken
    • 4
  • Jef van Meerbergen
    • 5
  1. 1.Eindhoven University of TechnologyNetherlands
  2. 2.NXP SemiconductorsNetherlands
  3. 3.Eindhoven University of TechnologyNetherlands
  4. 4.Silicon HiveNetherlands
  5. 5.Eindhoven University of TechnologyNetherlands

Personalised recommendations