Architectures for High Dynamic Range, High Speed Image Sensor Readout Circuits

  • Sam Kavusi
  • Kunal Ghosh
  • Abbas El Gamal
Part of the IFIP International Federation for Information Processing book series (IFIPAICT, volume 249)

The stringent performance requirements of many infrared imaging applications warrant the development of precision high dynamic range, high speed focal plane arrays. In addition to achieving high dynamic range, the readout circuits for these image sensors must achieve high linearity and SNR at low power consumption. We first review four high dynamic range image sensor schemes that have been developed for visible range imaging and discuss why they cannot meet the stringent performance demands of infrared imaging. We then describe a new dynamic range extension scheme, Folded Multiple Capture, that can meet these performance requirements. Dynamic range is extended using synchronous self-reset while high SNR is maintained using few non-uniformly spaced captures and least-squares fit to estimate pixel photocurrent. We conclude with a description of a prototype of this architecture targeted for 3D-IC IR focal plane arrays.


Image Sensor Shot Noise High Dynamic Range Research Trend Focal Plane Array 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    R. Balcerak,“Vertically Integrated Sensor Arrays (VISA),” DARPA/MTO Photon-ics Symposium, Dec 2004.Google Scholar
  2. 2.
    S. Kavusi and A. El Gamal, “Quantitative Study of High-Dynamic-Range Image Sensor Architectures,” Proceedings of the SPIE, vol. 5301, pp. 264-275, Jun 2004.CrossRefGoogle Scholar
  3. 3.
    S. Kavusi, H. Kakavand, and A. El Gamal, “Quantitative Study of High Dynamic Range ΣΔ-based Focal Plane Array architectures,” Proceedings of the SPIE, vol. 5406, pp. 341-350, Aug 2004.CrossRefGoogle Scholar
  4. 4.
    S. Kavusi, K. Ghosh, A. El Gamal, “Architectures for High Dynamic Range, High Speed Image Sensor Readout Circuits,” invited, IFIP VLSI-SoC, pp. 36-41, Oct 2006.Google Scholar
  5. 5.
    S. Kavusi, H. Kakavand, A. El Gamal, “On Incremental Sigma-Delta Modulation with Optimal Filtering,” IEEE Transactions on Circuits and Systems-I: Regular papers, vol. 53, no. 5, pp. 1004-1015, May 2006.CrossRefMathSciNetGoogle Scholar
  6. 6.
    S. Kavusi and A. El Gamal, “Per-Pixel Analog Front End Architecture for High Dynamic Range Disturbance-Tolerant IR Imaging,” Proceedings of the SPIE, vol. 5406, pp. 351-360, Aug 2004.CrossRefGoogle Scholar
  7. 7.
    S. Kavusi, K. Ghosh, K. Fife and A. El Gamal, “A 0.18µm CMOS 1000 frames/sec, 138dB Dynamic Range Readout Circuit for 3D-IC IR Focal Plane Arrays, IEEE Custom Integrated Circuits Conference, pp. 229-232, Sep 2006.Google Scholar
  8. 8.
    V. Seshadri, The Inverse Gaussian Distribution: A Case Study in Exponential Fam-ilies, Oxford University Press, 1994.Google Scholar
  9. 9.
    D. Stoppa et al., “Novel CMOS Image Sensor with a 132-dB Dynamic Range,” IEEE Journal of Solid-State Circuits, vol. 37, no. 12, pp. 1846-1852, Dec 2002.CrossRefGoogle Scholar
  10. 10.
    V. Brajovic, T. Kanade, “A Sorting Image Sensor: an Example of Massively Parallel Intensity-to-time Processing for Low-latency Computational Sensor,” Proceedings  of the 1996 IEEE International Conference on Robotics and Automation, vol.2, pp. 1638-1643, Apr 1996.Google Scholar
  11. 11.
    T. Lulé, B. Schneider, and M. Bohm, “Design and Fabrication of a High Dynamic Range Image Sensor in TFA Technology,” IEEE Journal of Solid-State Circuits, vol. 34, no. 5, pp. 704-711, May 1999.CrossRefGoogle Scholar
  12. 12.
    D. Yang, B. Fowler, A. El Gamal, and H. Tian, “Image Sensor with Ultrawide Dynamic Range Floating-Point Pixel-Level ADC,” IEEE Journal of Solid-State Circuits, vol. 34, no. 12,pp. 1821-1834, Dec 1999.CrossRefGoogle Scholar
  13. 13.
    W. Bidermann et al., “A 0.18µm High Dynamic Range NTSC/PAL Imaging System-on-Chip with Embedded DRAM Frame Buffer,” IEEE International Solid-State Circuits Conference, pp. 212-213, Feb 2003.Google Scholar
  14. 14.
    O. Yadid-Pecht, E. R. Fossum, “Wide Intrascene Dynamic Range CMOS APS Using Dual Sampling,” IEEE Transactions on Electron Devices, vol. 44, no. 10, pp. 721-1723, Oct 1997.CrossRefGoogle Scholar
  15. 15.
    X. Q. Liu, A. El Gamal, “Synthesis of High Dynamic Range Motion Blur Free Image From Multiple Captures,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 50, no. 4, pp. 530-539, Apr 2003.CrossRefGoogle Scholar
  16. 16.
    C. Jansson, “A High-Resolution, Compact, and Low-Power ADC Suitable for Array Implementation in Standard CMOS,” IEEE Transactions on Circuits and Systems-I, vol. 42, no. 11, pp. 904-912, Nov 1995.CrossRefGoogle Scholar
  17. 17.
    J. Markus, J. Silva and G.C. Temes, “Theory and applications of incremental ΔΣ converters,”IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, volume 51, number 4, pp. 678-690, April 2004.CrossRefGoogle Scholar
  18. 18.
    O. Yadid-Pecht “Wide Dynamic Range Sensors,” Optical Engineering, vol. 38, no. 10, pp. 1650-1660, Oct 1999.CrossRefGoogle Scholar
  19. 19.
    B. Fowler, A. El Gamal, and D. Yang, “A CMOS Area Image Sensor with Pixel-Level A/D Conversion,” IEEE International Solid-State Circuits Conference, pp. 226-227, Feb 1994.Google Scholar
  20. 20.
    A. M. Fowler and I. Gatley, “Noise Reduction Strategy for Hybrid IR Focal Plane Arrays,” Proceedings of the SPIE, vol. 1541, pp. 127-133, Jul 1991.CrossRefGoogle Scholar
  21. 21.
    A. Bermak, A. Bouzerdoum, and K. Eshraghian, “A Vision Sensor with On-Pixel ADC and Built-in Light Adaptation Mechanism,” Microelectronics Journal, vol. 33, no. 12, pp 1091-1096, 2002.CrossRefGoogle Scholar

Copyright information

© International Federation for Information Processin 2008

Authors and Affiliations

  • Sam Kavusi
    • 1
  • Kunal Ghosh
    • 1
  • Abbas El Gamal
    • 1
  1. 1.Department of Electrical EngineeringStanford UniversityStanfordUSA

Personalised recommendations