Nanoceria Particles Prevent ROI-Induced Blindness

  • Junping Chen
  • Swanand Patil
  • Sudipta Seal
  • James F. McGinnis
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 613)

Retinal degeneration caused blindness, such as age-related macular degeneration (AMD), diabetic retinopathy (DR), retinitis pigmentosa (RP) and retinal detachment, is a major problem in clinical ophthalmology.Although genetic modifications are responsible for most retinal degenerative diseases, there is increasing evidence showing that reactive oxygen intermediates (ROIs), the byproducts of the oxidative metabolic reactions, are closely involved in the process of photoreceptor cell degeneration (Beatty et al., 2000; Maeda et al., 2005; Wenzel et al., 2005). These ROIs, including hydrogen peroxide, hypochlorite ions, hydroxyl radicals, hydroxyl ions and superoxide anions (Beatty et al., 2000), react with almost any nearby DNA, RNA, lipid, carbohydrate or protein. They are produced primarily by the normal oxidative metabolism that occurs in the mitochondrial respiratory chain.


Diabetic Retinopathy Retinitis Pigmentosa Photoreceptor Cell Cerium Oxide Retinal Degeneration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beatty, S., Koh, H., Phil, M., Henson, D. & Boulton, M., 2000, The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv. Ophthalmol. 45:115–134.PubMedCrossRefGoogle Scholar
  2. Caldwell, R.B., Bartoli, M., Behzadian, M.A., El-Remessy, A.E., Al-Shabrawey, M., Platt, D.H. & Caldwell, R.W., 2003, Vascular endothelial growth factor and diabetic retinopathy: pathophysiological mechanisms and treatment perspectives. Diabetes Metab. Res. Rev. 19:442–455.PubMedCrossRefGoogle Scholar
  3. Cao, W., Tombran-Tink, J., Elias R., Sezate S., Mrazek, D. & McGinnis, J.F., 2001, In vivo protection of photoreceptors from light damage by pigment epithelium derived factor. Invest Ophthalmol. Vis. Sci. 42:1646–1652.PubMedGoogle Scholar
  4. Chen, J., Patil, S., Seal, S. & McGinnis, J.F., 2006, Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxidase. Nature Nanotech. 1:142–150.CrossRefGoogle Scholar
  5. Conesa, J.C., 1995, Computer modeling of surfaces and defects on cerium dioxide. Surf. Sci. 339:337–352.CrossRefGoogle Scholar
  6. Deshpande, 2005, Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide. Appl. Phys. Lett. 87:1–3.CrossRefGoogle Scholar
  7. Emerit, J., Edeas, M. & Bricaire, F., 2004, Neurodegenerative diseases and oxidative stress. Biomed. Pharmacother. 58:39–46.PubMedCrossRefGoogle Scholar
  8. Herman, G.S., 1999, Characterization of surface defects on epitaxial CeO2(001) films. Surf. Sci. 437:207–214.CrossRefGoogle Scholar
  9. Kosacki, I., Suzuki, T., Anderson, H.U. & Colomban, P., 2002, Raman scattering and lattice defects in nanocrystalline CeO2 thin films. Solid State Ionics 149:99–105.Google Scholar
  10. LeBel, C.P., Ischiropoulos, H. & Bondy, S.C., 1992, Evaluation of the probe 20,70-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem. Res. Toxicol. 5:227–231.PubMedCrossRefGoogle Scholar
  11. Lewis, G.P., Erickson, P.A., Anderson, D.H. & Fisher, S.K., 1991, Opsin distribution and protein incorporation in photoreceptors after experimental retinal detachment. Exp. Eye Res. 53:629–640.PubMedCrossRefGoogle Scholar
  12. Maeda, A., Crabb, J.W. & Palczewski, K., 2005, Microsomal glutathione S-transferase 1 in the retinal pigment epithelium: protection against oxidative stress and a potential role in aging. Biochemistry. 44(2):480–489.PubMedCrossRefGoogle Scholar
  13. Mamontov, E., Egami, T., Brezay, R., Koranne, M. & Tyagi, S., 2000, Lattice defects and oxygen storage capacity of nanocrystalline ceria and ceria-zirconia. J. Phys. Chem. 104:1110–1116.Google Scholar
  14. McGinnis, J.F., Stepanik, P.L., Chen W., Elias R., Cao W. & Lerious V., 1999, Unique retina cell phenotypes revealed by immunological analysis of recoverin expression in rat retina cells. J. Neurosci. Res. 55:252–260.PubMedCrossRefGoogle Scholar
  15. Patil, S., Seal, S., Guo, Y., Schulte, A. & Norwood, J., 2006, Role of trivalent La and Nd dopants in lattice distortion and oxygen vacancy generation in cerium oxide nanoparticles. Appl. Phys. Lett. 88:1–3.CrossRefGoogle Scholar
  16. Suzuki, T., Kosacki, I., Anderson, H.U. & Colomban, P., 2001, Electrical conductivity and lattice defects in nanocrystalline cerium oxide thin films. J. Am. Ceram. Soc. 84:2007–2014.CrossRefGoogle Scholar
  17. Wenzel, A., Grimm, C., Samardzija, M. & Reme, C.E., 2005, Molecular mechanisms of light-induced photoreceptor apoptosis and neuroprotection for retinal degeneration. Progr. Retial Eye Res. 24:275–306.CrossRefGoogle Scholar
  18. Yu, D. & Cringle., S.J., 2005, Retinal degeneration and local oxygen metabolism. Exp. Eye Res. 80:745–751.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Junping Chen
    • 1
  • Swanand Patil
    • 2
  • Sudipta Seal
    • 3
  • James F. McGinnis
    • 4
  1. 1.Oklahoma Center for Neuroscience; Dean A. McGee Eye InstituteUniversity of Oklahoma Health Sciences CenterOklahoma CityUSA
  2. 2.Surface Engineering and Nanotechnology Facility, Advanced Materials Processing Analysis Center, Nanoscience and Technology CenterUniversity of Central FloridaOrlandoUSA
  3. 3.Surface Engineering and Nanotechnology Facility, Advanced Materials Processing Analysis Center, Nanoscience and Technology CenterUniversity of Central FloridaOrlandoUSA
  4. 4.Oklahoma Center for Neuroscience, Dean A. McGee Eye Institute, Department of Cell Biology, Department of OphthalmologyUniversity of Oklahoma Health Sciences CenterOklahoma CityUSA

Personalised recommendations