Skip to main content

Variation in the Electroretinogram of C57BL/6 Substrains of Mouse

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 613))

The electroretinogram (ERG) is one of the most commonly used clinical techniques to measure visual function. The ERG records the impulse generated by retinal cells in response to a single flash of light (Fishman et al., 2001). By altering the light or dark adapted status of the subject and recording at different light intensities and/or flicker frequencies, rod and cone function can be recorded and analysed in isolation, as can the function of second order neurons (Marmor et al., 2004). The ERG is a complex waveform and alterations can be used to diagnose and follow the progress of a variety of retinal disorders. Since this system is non-invasive, it can also be adapted to record from anaesthetised mice, specifically those with either spontaneous or targeted mutations in retinal genes (Nusinowitz and Ridder , 2002; Peachey and Ball, 2003).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Danciger M, Lyon J, Worrill D, LaVail MM, Yang H (2003) A strong and highly significant QTL on chromosome 6 that protects the mouse from age-related retinal degeneration. Invest Ophthalmol Vis Sci 44: 2442–49

    Article  PubMed  Google Scholar 

  • Farrer M, Maraganore D, Lockhart P, Singleton A, Lesnick T, de Andrade M, West A, de Silva R, Hardy J, Hernandez D (2001) alpha-Synuclein gene haplotypes are associated with Parkinson’s disease. Hum Mol Genet. 10: 1847–51

    Article  PubMed  CAS  Google Scholar 

  • Fishman GA, Birch DG, Holder GE, Birgell MG (2001) Electrophysiologic testing in disorders of the retina, optic nerve, and visual pathway (2nd Ed) American Academy of Ophthalmology Monograph Series, No. 2.

    Google Scholar 

  • Green D, Herreros de Tejada P, Glover M (1994) Electrophysiological estimates of visual sensitivity in albino and pigmented mice. Vis Neurosci 11: 919–25

    Article  PubMed  CAS  Google Scholar 

  • Gresh J, Goletz P, Crouch R, Rohrer B (2003) Structure-function analysis of rods and cones in juvenile, adult, and aged C57bl/6 and Balb/c mice. Vis Neurosci 20: 211–20

    Article  PubMed  Google Scholar 

  • Humphries MM, Kiang S, McNally N, Donovan MA, Sieving PA, Bush RA, Machida S, Cotter T, Hobson A, Farrar J, Humphries P, Kenna P (2001) Comparative structural and functional analysis of photoreceptor neurons of Rho-/- mice reveal increased survival on C57BL/6 J in comparison to 129 Sv genetic background. Vis Neurosci 18: 437–43

    Article  PubMed  CAS  Google Scholar 

  • Ikeda A, Naggert JK, Nishina PM (2002) Genetic modification of retinal degeneration in tubby mice. Exp Eye Res. 74: 455–61

    Article  PubMed  CAS  Google Scholar 

  • Ikeda S, Hawes NL, Chang B, Avery CS, Smith RS, Nishina PM (1999) Severe ocular abnormalities in C57BL/6 but not in 129/Sv p53-deficient mice. Invest. Ophthalmol. Vis Sci 40: 1874–78

    CAS  Google Scholar 

  • Jagadeesh J, Sanchez R (1981) Effects of apomorphine on the rabbit electroretinogram. Invest Ophthalmol Vis Sci 21: 620–24

    PubMed  CAS  Google Scholar 

  • Marmor M, Holder GE, Seeliger MW, S. Y (2004) Standard for clinical electroretinography (update). Doc Ophthalmol 108: 107–114

    Article  PubMed  Google Scholar 

  • MGI Database (2007) The Jackson Laboratory.http://www.informatics.jax.org/menus/strain_menu.shtml

  • Nusinowitz S, Ridder W. H. III, JR. H (2002) Electrophysiological testing of the mouse visual system. In: Sundberg J (ed) Systematic evaluation of the mouse eye: anatomy, pathology and biomethods., vol 1. CRC Press, Boca Raton, pp 320–344

    Google Scholar 

  • Peachey N, Ball S (2003) Electrophysiological analysis of visual function in mutant mice. Doc Ophthalmol. 107: 13–36

    Article  PubMed  Google Scholar 

  • Petkov P, Ding Y, Cassell M, Zhang W, Wagner G, Sargent E, Asquith S, Crew V, Johnson K, Robinson P, Scott V, Wiles M (2004) An efficient SNP system for mouse genome scanning and elucidating strain relationships. Genome Res 14: 1806–11

    Article  PubMed  CAS  Google Scholar 

  • Simpson E, Linder CC, Sargent EE, Davisson MT, Mobraaten LE, Sharp, JJ (1997) Genetic variation among 129 substrains and its importance for targeted mutagenesis in mice. Nature Genetics 16: 19–27

    Article  PubMed  CAS  Google Scholar 

  • Smith R, John S, Nishina P, Sundberg J (2002) Systematic evaluation of the mouse eye: anatomy, pathology and biomethods. CRC Press LLC, Boca Raton, FL

    Google Scholar 

  • Specht C, Schoepfer R (2001) Deletion of the alpha-synuclein locus in a subpopulation of C57BL/6 J inbred mice. BMC Neurosci 2: 11

    Article  PubMed  CAS  Google Scholar 

  • Specht CG, Schoepfer R (2004) Deletion of multimerin-1 in [alpha]-synuclein-deficient mice. Genomics 83: 1176–78

    Article  PubMed  CAS  Google Scholar 

  • Taft R, Davisson M, Wiles M (2006) Know thy mouse. Trends Genet 22: 649–53

    Article  PubMed  CAS  Google Scholar 

  • The Jackson Laboratory (2006) Genetic background: understanding its importance in mouse-based biomedical research. http://jaxmice.jax.org/literature/manuals/mouse_ genetics_resource_manual.pdf

  • Wenzel A, Reme CE, Williams TP, Hafezi F, Grimm C (2001) The Rpe65 Leu450Met variation increases retinal resistance against light-induced degeneration by slowing rhodopsin regeneration. J Neurosci 21: 53–58

    PubMed  CAS  Google Scholar 

  • Williams RW, Strom RC, Goldowitz D (1998) Natural variation in neuron number in mice is linked to a major quantitative trait Locus on Chr 11. J Neurosci 18: 138–46

    PubMed  CAS  Google Scholar 

  • Zhou G, Williams R (1999) Eye1 and Eye2: gene loci that modulate eye size,lens weight, and retinal area in the mouse. Invest Ophthalmol Vis Sci 40: 817–25

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison L. Reynolds .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Reynolds, A.L., Farrar, G.J., Humphries, P., Kenna, P.F. (2008). Variation in the Electroretinogram of C57BL/6 Substrains of Mouse. In: Anderson, R.E., LaVail, M.M., Hollyfield, J.G. (eds) Recent Advances in Retinal Degeneration. Advances in Experimental Medicine and Biology, vol 613. Springer, New York, NY. https://doi.org/10.1007/978-0-387-74904-4_45

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-74904-4_45

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-74902-0

  • Online ISBN: 978-0-387-74904-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics