Advertisement

Implantation of Mouse Eyes with a Subretinal Microphotodiode Array

  • Machelle T. Pardue
  • Tiffany A. Walker
  • Amanda E. Faulkner
  • Moon K. Kim
  • Christopher M. Bonner
  • George Y. McLean
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 613)

Retinal prosthetics are designed to restore vision in patients with photoreceptor degenerative diseases, such as retinitis pigmentosa (RP) and macular degeneration. Subretinal microphotodiode arrays (MPAs), which response to incident light in a gradient fashion, have been designed to replace degenerating photoreceptors. Such devices have been implanted into rats (Ball et al., 2001), cats (Chow et al., 2001) and humans (Chow et al., 2004). These studies have revealed that implantation of a MPA device is capable of restoring some visual function in patients (Chow et al., 2004) and eliciting a superior colliculus response in normal and degenerating rats (DeMarco et al., 2007). Furthermore, the low level electrical stimulation produced by the MPA device has been shown to have neuroprotective properties (Pardue et al., 2005).

Keywords

Retinitis Pigmentosa Retinal Degeneration Retinal Function Subretinal Space Photoreceptor Degeneration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ball, S.L., Pardue, M.T., Chow, A.Y., Chow, V.Y., and Peachey, N.S., 2001, Subretinal implantation of photodiodes in rodent models of photoreceptor degeneration, In: New Insights into Retinal Degenerative Diseases, R.E. Anderson, M.M. LaVail, and J.G. Hollyfield, eds., Kluwer/Plenum, New York, pp.175–182.Google Scholar
  2. Chang, B., Hawes, N.L., Hurd, R.E., Davisson, M.T., Nusinowitz, S., and Heckenlively, J.R., 2002, Retinal degeneration mutants in the mouse. Vision Res. 42:517–25.PubMedCrossRefGoogle Scholar
  3. Chow, A.Y., Pardue, M.T., Chow, V.Y., Peyman, G.A., Liang, C., Perlman, J.I., and Peachey, N.S., 2001, Implantation of silicon chip microphotodiode arrays into the cat subretinal space. IEEE Trans. Neural Syst. Rehabil. Eng. 9:86–95.PubMedCrossRefGoogle Scholar
  4. Chow, A.Y., Pardue, M.T., Perlman, J.I., Ball, S.L., Chow, V.Y., Hetling, J.R., Peyman G.A., Liang, C., Stubbs, E.B., Jr., and Peachey, N.S., 2002, Subretinal implantation of semiconductor-based photodiodes: durability of novel implant designs. J. Rehabil. Res. Dev. 39:313–321.PubMedGoogle Scholar
  5. Chow, A.Y., Chow, V.Y., Peyman, G.A., Packo, K.H., Pollack, J.S., and Schuchard, R., 2004, The artificial silicon retinaTM (ASRTM) chip for the treatment of vision loss from retinitis pigmentosa. Arch. Ophthalmol. 122:460–469.PubMedCrossRefGoogle Scholar
  6. Ciavatta, V.T., Chrenek, M., Wong, P., Nickerson, J.M., and Pardue, M.T., 2006, Growth factor expression following implantation of microphotodiode arrays in RCS rats. ARVO E-abstract 3177.Google Scholar
  7. Dalke, C., and Graw, J., 2005, Mouse mutants as models for congenital retinal disorders. Exp. Eye Res. 81:503–512.PubMedCrossRefGoogle Scholar
  8. D&’Cruz, P.M., Yasumura, D., Weir, J., Matthes, M.T., Abderrahim, H., LaVail, M.M., and Vollrath, D., 2000, Mutation of the receptor tyrosine kinase gene MertK in the retina dystrophic RCS rat. Hum. Mol. Genet. 9:645–51.PubMedCrossRefGoogle Scholar
  9. DeMarco, P.J., Jr., Yarbrough, G.L., Yee, C.W., McLean, G.Y., Sagdullaev, B.T., Ball, S.L., and McCall, M.A., 2007, Stimulation via a subretinally placed prosthetic elicits central activity and induces a trophic effect on visual responses. Invest. Ophthalmol. Vis. Sci. 48:916–26.PubMedCrossRefGoogle Scholar
  10. Lee, D., Geller, S., Walsh, N., Valter, K., Yasumura, D., Matthes, M., LaVail, M., and Stone, J., 2003, Photoreceptor degeneration in Pro23His and S334ter transgenic rats. Adv. Exp. Med. Biol. 533:297–302.PubMedGoogle Scholar
  11. Mullen, R.J., and LaVail, M.M., 1976, Inherited retinal dystrophy: primary defect in pigment epithelium determined with experiment rat chimeras. Science 192:799–801.PubMedCrossRefGoogle Scholar
  12. Pardue, M.T., Phillips, M.J., Yin, H., Sippy, B.D., Webb-wood, S., Chow, A.Y., and Ball, S.L., 2005, Neuroprotective effect of subretinal implants in the RCS rat. Invest. Ophthalmol. Vis. Sci. 46:674–682.PubMedCrossRefGoogle Scholar
  13. Pardue, M.T., Stubbs, E.B., Jr., Perlman, J.I., Narfstrom, K., Chow, A.Y., and Peachey, N.S., 2001, Immunohistochemical studies of the retina following long-term implantation with subretinal microphotodiode arrays. Exp. Eye Res. 73:333–343.PubMedCrossRefGoogle Scholar
  14. Turner, P.V., and Albassam, M.A., 2005, Susceptiblity of rats to corneal lesions after injectable anesthesia. Comp. Med. 55:175–182.PubMedGoogle Scholar
  15. Walker, T.A., Faulkner, A.E., Cheng, Y., Yin, H., Fernandes, A., Phillips, M.J., Ball, S.L., Chow, A.Y., and Pardue, M.T., 2005, Subretinal implantation induces photoreceptor preservation in RCS rat not seen in wild-type long evans or S334ter rats. ARVO E-Abstract 5267.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Machelle T. Pardue
    • 1
  • Tiffany A. Walker
    • 1
  • Amanda E. Faulkner
    • 1
  • Moon K. Kim
    • 1
  • Christopher M. Bonner
    • 2
  • George Y. McLean
    • 2
  1. 1.Rehab R&D, Atlanta VA Medical CenterDecaturUSA
  2. 2.Optobionics, CorpNaperville

Personalised recommendations