Involvement of Guanylate Cyclases in Transport of Photoreceptor Peripheral Membrane Proteins

  • Sukanya Karan
  • Jeanne M. Frederick
  • Wolfgang Baehr
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 613)

Guanylate cyclase 1 (GC1) is present in mouse rod and cone outer segments while guanylate cyclase 2 (GC2) is present only in rods. Accordingly, deletion of GC1 (gene symbol Gucy2e) affects predominantly cones while knockout of GC2 (gene symbol Gucy2f) has no major effect on rod and cone physiology since GC1 can substitute for the loss of GC2. Simultaneous inactivation of GC1 and GC2 abolishes rod and cone phototransduction, generating a phenotype affecting viability of both rods and cones, and resembling human Leber Congenital Amaurosis.


Outer Segment Guanylyl Cyclase Mouse Retina Cone Dystrophy Membrane Guanylate Cyclase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baehr, W., Karan, S., Maeda, T., Luo, D. G., Li, S., Bronson, J. D., Watt, C. B., Yau, K.-W., Frederick J. M., and Palczewski, K., 2007, The function of Guanylate Cyclase 1 (GC1) and Guanylate Cyclase 2 (GC2) in rod and cone photoreceptors, J. Biol. Chem. 282:8837–8847.PubMedCrossRefGoogle Scholar
  2. Coleman, J. E., Zhang, Y., Brown, G. A., and Semple-Rowland, S. L., 2004, Cone cell survival and downregulation of GCAP1 protein in the retinas of GC1 knockout mice, Invest Ophthalmol. Vis. Sci. 45:3397–3403.PubMedCrossRefGoogle Scholar
  3. Coleman, J. E., and Semple-Rowland, S. L., 2005, GC1 deletion prevents light-dependent arrestin translocation in mouse cone photoreceptor cells, Invest Ophthalmol. Vis. Sci. 46:12–16.PubMedCrossRefGoogle Scholar
  4. Concepcion, F., Mendez, A., and Chen, J., 2002, The carboxyl-terminal domain is essential for rhodopsin transport in rod photoreceptors, Vision Res. 42:417–426.PubMedCrossRefGoogle Scholar
  5. Deretic, D., 1998, Post-Golgi trafficking of rhodopsin in retinal photoreceptors Eye 12 (Pt 3b): 526–530.PubMedGoogle Scholar
  6. Deretic, D., Williams, A. H., Ransom, N., Morel, V., Hargrave, P. A., and Arendt, A., 2005, Rhodopsin C terminus, the site of mutations causing retinal disease, regulates trafficking by binding to ADP-ribosylation factor 4 (ARF4), Proc. Natl. Acad. Sci U.S.A. 102:3301–3306.PubMedCrossRefGoogle Scholar
  7. Duda, T., and Koch, K. W., 2002, Calcium-modulated membrane guanylate cyclase in synaptic transmission? Mol. Cell Biochem. 230:107–116.PubMedCrossRefGoogle Scholar
  8. Elias, R. V., Sezate, S. S., Cao, W., and McGinnis, J. F., 2004, Temporal kinetics of the light/dark translocation and compartmentation of arrestin and alpha-transducin in mouse photoreceptor cells, Mol. Vis. 10:672–681.PubMedGoogle Scholar
  9. Frederick, J. M., Krasnoperova, N. V., Hoffmann, K., Church-Kopish, J., Ruether, K., Howes, K. A., Lem, J., and Baehr, W., 2001, A P23H-containing mutant rhodopsin transgene expressed on a null background forms a non-functional, cytotoxic product and accelerates retinal degeneration, Invest Ophthalmol. Vis. Sci. 42:826–833.PubMedGoogle Scholar
  10. Hanein, S., Perrault, I., Gerber, S., Tanguy, G., Barbet, F., Ducroq, D., Calvas, P., Dollfus, H., Hamel, C., Lopponen, T., Munier, F., Santos, L., Shalev, S., Zafeiriou, D., Dufier, J. L., Munnich, A., Rozet, J. M., and Kaplan, J., 2004, Leber congenital amaurosis: comprehensive survey of the genetic heterogeneity, refinement of the clinical definition, and genotype-phenotype correlations as a strategy for molecular diagnosis, Hum. Mutat. 23:306–317.PubMedCrossRefGoogle Scholar
  11. Humphries, M. M., Rancourt, D., Farrar, G. J., Kenna, P., Hazel, M., Bush, R. A., Sieving, P. A., Sheils, D. M., McNally, N., Creighton, P., Erven, A., Boros, A., Gulya, K., Capecchi, M. R., and Humphries, P., 1997, Retinopathy induced in mice by targeted disruption of the rhodopsin gene. Nature Genet. 15:216–219.PubMedCrossRefGoogle Scholar
  12. Imanishi, Y., Li, N., Sowa, M. E., Lichtarge, O., Wensel, T. G., Saperstein, D. A., Baehr, W., and Palczewski, K., 2002, Characterization of retinal guanylate cyclase-activating protein 3 (GCAP3) from zebrafish to man, Eur. J. Neurosci. 15:63–78.PubMedCrossRefGoogle Scholar
  13. Kerov, V., Chen, D., Moussaif, M., Chen, Y. J., Chen, C. K., and Artemyev, N. O., 2005, Transducin activation state controls its light-dependent translocation in rod photoreceptors, J. Biol. Chem. 280:41069–41076.PubMedCrossRefGoogle Scholar
  14. Lamb, T. D., and Pugh, E. N. Jr., 2006, Phototransduction, dark adaptation, and rhodopsin regeneration the proctor lecture, Invest Ophthalmol. Vis. Sci. 47:5138–5152.CrossRefGoogle Scholar
  15. Lem, J., Krasnoperova, N. V., Calvert, P. D., Kosaras, B., Cameron, D. A., Nicol. O, M., Makino, C. L., and Sidman, R. L., 1999, Morphological, physiological, and biochemical changes in rhodopsin knockout mice, Proc. Natl. Acad. Sci. U.S.A. 96:736–741.PubMedCrossRefGoogle Scholar
  16. Lowe, D. G., Dizhoor, A. M., Liu, K., Gu, Q., Spencer, M., Laura, R., Lu, L., and. Hurley, J. B., 1995, Cloning and expression of a second photoreceptor-specific membrane retina guanylyl cyclase (RetGC), RetGC-2, Proc. Natl. Acad. Sci. U.S.A. 92:5535–5539.PubMedCrossRefGoogle Scholar
  17. Marszalek, J. R., Liu, X., Roberts, E. A., Chui, D., Marth, J. D., Williams, D. S., and Goldstein, L. S., 2000, Genetic evidence for selective transport of opsin and arrestin by kinesin-II in mammalian photoreceptors, Cell. 102:175–187.PubMedCrossRefGoogle Scholar
  18. McNally, N., Kenna, P., Humphries, M. M., Hobson, A. H., Khan, N. W., Bush, R. A., Sieving, P. A., Humphries, P., and Farrar, G. J., 1999, Structural and functional rescue of murine rod photoreceptors by human rhodopsin transgene, Hum. Mol. Genet. 8: 1309–1312.PubMedCrossRefGoogle Scholar
  19. Mou, H., and Cote, R. H., 2001, The catalytic and GAF domains of the rod cGMP phosphodiesterase (PDE6) heterodimer are regulated by distinct regions of its inhibitory gamma subunit, J Biol. Chem. 276:27527–27534.PubMedCrossRefGoogle Scholar
  20. Palczewski, K., Sokal, I., and Baehr, W., 2004, Guanylate cyclase-activating proteins: structure, function, and diversity, Biochem. Biophys. Res. Commun. 322:1123–1130.PubMedCrossRefGoogle Scholar
  21. Qin, N., and Baehr, W., 1994, Expression and mutagenesis of mouse rod photoreceptor cGMP phosphodiesterase, J. Biol. Chem. 269:3265–3271.PubMedGoogle Scholar
  22. Raport, C. J., Lem, J., Makino, C., Chen, C.-K., Fitch, C. L., Hobson, A., Baylor, D., Simon, M. I., and Hurley, J. B., 1994, Downregulation of cGMP phosphodiesterase induced by expression of GTPase-deficient cone transducin in mouse rod photoreceptors, Invest. Ophthalmol. Vis. Sci. 35: 2932–2947.PubMedGoogle Scholar
  23. Rosenbaum, J. L., and Witman, G. B., 2002, Intraflagellar transport, Nat. Rev. Mol. Cell Biol. 3:813–825.PubMedCrossRefGoogle Scholar
  24. Rudnicka-Nawrot, M., Surgucheva, I., Hulmes, J. D., Haeseleer, F., Sokal, I., Crabb, J. W., Baehr, W., and Palczewski, K., 1998, Changes in biological activity and folding of guanylate cyclase-activating protein 1 as a function of calcium, Biochemistry 37:248–257.PubMedCrossRefGoogle Scholar
  25. Seebacher, T., Beitz, E., Kumagami, H., Wild, K., Ruppersberg, J. P., and Schultz, J. E., 1999, Expression of membrane-bound and cytosolic guanylyl cyclases in the rat inner ear, Hear. Res. 127:95–102.PubMedCrossRefGoogle Scholar
  26. Semple-Rowland, S. L., Lee, N. R., Van Hooser, J. P., Palczewski, K., and Baehr, W., 1998, A null mutation in the photoreceptor guanylate cyclase gene causes the retinal degeneration chicken phenotype, Proc. Natl. Acad. Sci. U.S.A. 95:1271–1276.PubMedCrossRefGoogle Scholar
  27. Shyjan, A. W., de Sauvage, F. J., Gillett, N. A., Goeddel, D. V., and Lowe, D. G., 1992, Molecular cloning of a retina-specific membrane guanylyl cyclase, Neuron. 9:727–737.PubMedCrossRefGoogle Scholar
  28. Tucker, C. L., Ramamurthy, V., Pina, A. L., Loyer, M., Dharmaraj, S., Li, Y., Maumenee, I. H., Hurley, J. B., and Koenekoop, R. K., 2004, Functional analyses of mutant recessive GUCY2D alleles identified in Leber congenital amaurosis patients: protein domain comparisons and dominant negative effects, Mol. Vis. 10:297–303.PubMedGoogle Scholar
  29. Tai, A. W., Chuang, J. Z., Bode, C., Wolfrum, U., and Sung, C. H., 1999, Rhodopsin’s carboxy-terminal cytoplasmic tail acts as a membrane receptor for cytoplasmic dynein by binding to the dynein light chain Tctex-1, Cell. 97:877–887.PubMedCrossRefGoogle Scholar
  30. Tai, A. W., Chuang, J. Z., Sung, C. H., 2001, Cytoplasmic dynein regulation by subunit heterogeneity and its role in apical transport, J. Cell Biol. 153:1499–1509.PubMedCrossRefGoogle Scholar
  31. Tucker, C. L., Woodcock, S. C., Kelsell, R. E., Ramamurthy, V., Hunt, D. M., and Hurley, J. B., 1999, Biochemical analysis of a dimerization domain mutation in RetGC-1 associated with dominant cone-rod dystrophy, Proc. Natl. Acad. Sci. U.S.A. 96:9039–9044PubMedCrossRefGoogle Scholar
  32. Vaughan, D. K., Fisher, S. K., Bernstein, S. A., Hale, I. L., Linberg, K. A., Matsumoto, B., 1989, Evidence that microtubules do not mediate opsin vesicle transport in photoreceptors, J. Cell Biol. 109:3053–3062.PubMedCrossRefGoogle Scholar
  33. Yang, R. B., Robinson, S. W., Xiong, W. H., Yau, K. W., Birch, D. G., and Garbers, D. L., 1999, Disruption of a retinal guanylyl cyclase gene leads to cone-specific dystrophy and paradoxical rod behavior, J. Neurosci. 19:5889–5897.PubMedGoogle Scholar
  34. Zhang, H., Li, S., Doan, T., Rieke, F., Detwiler, P. B., Frederick, J. M., and Baehr, W., 2007, Deletion of PrBP/delta impedes transport of GRK1 and PDE6 catalytic subunits to photoreceptor outer segments, Proc. Natl. Acad. Sci U.S.A. 104: 8857–8862.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Sukanya Karan
    • 1
  • Jeanne M. Frederick
    • 1
  • Wolfgang Baehr
    • 1
  1. 1.John A. Moran Eye CenterUniversity of Utah

Personalised recommendations