Advertisement

Proteomics Profiling of the Cone Photoreceptor Cell Line, 661W

  • Muayyad R. Al-Ubaidi
  • Hiroyuki Matsumoto
  • Sadamu Kurono
  • Anil Singh
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 613)

Cultured retinal cells are convenient experimental systems offering great advantages in the assessment of numerous retinal processes. The two most important advantages are the ease of evaluation of an isolated cellular function without the effects of other retinal cell types and an avoidance of use of the more costly animal research. The Two obvious disadvantages are the loss of the architecture of the native tissue, and lack of functional influence of other retinal cell types. However, for most of the research applications, the advantages of use of in vitro systems offset the potential limitations.

Keywords

Internal Ribosomal Entry Site Retinal Cell Amacrine Cell Mesial Temporal Lobe Epilepsy Peptide Mass Fingerprint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Ubaidi, M. R., Font, R. L., Quiambao, A. B., Keener, M. J., Liou, G. I.,Overbeek, P. A., & Baehr, W. (1992). Bilateral retinal and brain tumors in transgenic mice expressing simian virus 40 large T antigen under control of the human interphotoreceptor retinoid-binding protein promoter. J. Cell Biol., 119, 1681–1687.PubMedCrossRefGoogle Scholar
  2. Berger, S. J., DeVries, G. W., Carter, J. G., Schulz, D. W., Passonneau, P. N., Lowry, O. H. et al., (1980). The distribution of the components of the cyclic GMP cycle in retina. J Biol Chem, 255, 3128–3133.PubMedGoogle Scholar
  3. Bernstin, S. L., Kutty, G., Wiggert, B., Albert, D. M., & Nickerson, J. M. (1994). Expression of retina-specific genes by mouse retinoblastoma cells. Invest. Ophthalmol. Vis. Sci., 35, 3931–3937.Google Scholar
  4. Bhattacharjee, J. (1976). Developmental changes of carbonic anhydrase in the retina of the mouse: a histochemical study. Histochem. J.,8, 63–70.PubMedCrossRefGoogle Scholar
  5. Bogenmann, E., Lochrie, M. A., & Simon, M. I. (1988). Cone cell-specific genes expressed in retinoblastoma. Science, 240, 76–78.PubMedCrossRefGoogle Scholar
  6. Brown, A. M., Gordon, D., Lee, H., Caudy, M., Hardy, J., Haroutunian, V. et al., (2004). Association of the dihydrolipoamide dehydrogenase gene with Alzheimer’s disease in an Ashkenazi Jewish population. Am. J. Med. Genet. B Neuropsychiatr. Genet., 131, 60–66.CrossRefGoogle Scholar
  7. Carr, S.,Aebersold, R., Baldwin, M., Burlingame, A., Clauser, K., & Nesvizhskii, A. (2004). The need for guidelines in publication of peptide and protein identification data: working group on publication guidelines for peptide and protein identification data. Mol. Cell Proteomics., 3, 531–533.PubMedCrossRefGoogle Scholar
  8. Chien, C. L. & Liem, R. K. (1995). The neuronal intermediate filament, alpha-internexin is transiently expressed in amacrine cells in the developing mouse retina. Exp. Eye Res., 61,749–756.PubMedCrossRefGoogle Scholar
  9. Di Polo, A. & Farber, D. B. (1995). Rod photoreceptor-specific gene expression in human retinoblastoma cells. Proc. Natl. Acad. Sci. U.S.A, 92, 4016–4020.PubMedCrossRefGoogle Scholar
  10. Drager, U. C. (1983). Coexistence of neurofilaments and vimentin in a neurone of adult mouse retina. Nature, 303, 169–172.PubMedCrossRefGoogle Scholar
  11. Dzwonek, A., Mikula, M., & Ostrowski, J. (2006). The diverse involvement of heterogeneous nuclear ribonucleoprotein K in mitochondrial response to insulin. FEBS Letters, 580,1839–1845.PubMedCrossRefGoogle Scholar
  12. Fujii, T., Ikeda, Y., Yamashita, H., & Fujii, J. (2003). Transient elevation of glutathione peroxidase 1 around the time of eyelid opening in the neonatal rat. J. Ocul. Pharmacol. Ther., 19, 361–369.PubMedCrossRefGoogle Scholar
  13. Gaudin, C., Forster, V., Sahel, J., Dreyfus, H., & Hicks, D. (1996). Survival and regeneration of adult human and other mammalian photoreceptors in culture. Invest Ophthalmol. Vis. Sci., 37, 2258–2268.PubMedGoogle Scholar
  14. Greijer, A. E., van der, G. P., Kemming, D., Shvarts, A., Semenza, G. L.,Meijer, G. A. et.al., (2005). Up-regulation of gene expression by hypoxia is mediated predominantly by hypoxia-inducible factor 1 (HIF-1). J. Pathol., 206, 291–304.PubMedCrossRefGoogle Scholar
  15. Hahm, B., Kim, Y. K., Kim, J. H., Kim, T. Y., & Jang, S. K. (1998).Heterogeneous nuclear ribonucleoprotein L interacts with the 3’border of the internal ribosomal entry site of hepatitis C virus. J Virology, 72, 8782–8788.PubMedGoogle Scholar
  16. Haniu, H., Komori, N., Takemori, N., Singh, A., Ash, J. D., & Matsumoto, H. (2006). Proteomic trajectory mapping of biological transformation: Application to developmental mouse retina.Proteomics., 6, 3251–3261.PubMedCrossRefGoogle Scholar
  17. Hsu, S. C. & Molday, R. S. (1991). Glycolytic enzymes and a GLUT-1 glucose transporter in the outer segments of rod and cone photoreceptor cells. J. Bio. Chem., 266, 21745–21752.Google Scholar
  18. Kanan, Y., Moiseyev, G., Agarwal, N.,Ma, J. X., & Al Ubaidi, M. R. (2007). Light induces programmed cell death by activating multiple independent proteases in a cone photoreceptor cell line. Invest Ophthalmol. Vis. Sci., 48, 40–51.PubMedCrossRefGoogle Scholar
  19. Kelley, M. W., Turner, J. K., & Reh, T. A. (1995). Regulation of proliferation and photoreceptor differentiation in fetal human retinal cell cultures. Invest Ophthalmol. Vis. Sci., 36, 1280–1289.PubMedGoogle Scholar
  20. Lemmon, V. & Rieser, G. (1983). The development distribution of vimentin in the chick retina. Brain Res., 313, 191–197.PubMedGoogle Scholar
  21. Levine, M. A., Smallwood, P. M., Moen, P. T., Jr., Helman, L. J., & Ahn, T. G. (1990). Molecular cloning of beta 3 subunit, a third form of the G protein beta-subunit polypeptide. Proc. Natl. Acad. Sci. U.S.A, 87, 2329–2333.PubMedCrossRefGoogle Scholar
  22. Linser, P. & Moscona, A. A. (1979). Induction of glutamine synthetase in embryonic neural retina: localization in Muller fibers and dependence on cell interactions. Proc. Natl. Acad. Sci. U.S.A, 76, 6476–6480.PubMedCrossRefGoogle Scholar
  23. Matsumoto, H., Kahn, E. S., & Komori, N. (1999). The emerging role of mass spectrometry in molecular biosciences: studies of protein phosphorylation in fly eyes as an example. Novartis.Found. Symp., 224, 225–244.PubMedCrossRefGoogle Scholar
  24. Matsumoto, H. & Komori, N. (2000). Ocular proteomics: cataloging photoreceptor proteins by two-dimensional gel electrophoresis and mass spectrometry. Methods Enzymol., 316, 492–511.PubMedCrossRefGoogle Scholar
  25. McFall, R. C., Sery, T. W., & Makadon, M. (1977). Characterization of a new continuous cell line derived from a human retinoblastoma. Cancer Res., 37, 1003–1010.PubMedGoogle Scholar
  26. Mortimer, S. E. & Hedstrom, L. (2005). Autosomal dominant retinitis pigmentosa mutations in inosine 5’-monophosphate dehydrogenase type I disrupt nucleic acid binding. Biochem. J., 390, 41–47.PubMedCrossRefGoogle Scholar
  27. Nagayoshi, M., Hirata, Y., Tamaru, M., Sugimoto, S., Shimizu, J.,Hirabayashi, K. et al., (1986). A neurochemical study of rat brain maldevelopment induced by MAM treatment at different stages of gestation. Nippon Seirigaku Zasshi, 48, 14–25.PubMedGoogle Scholar
  28. Nicolas, M. G., Fujiki, K., Murayama, K., Suzuki, M. T., Mineki, R., Hayakawa, M. et al., (1996). Studies on the mechanism of early onset macular degeneration in cynomolgus (Macaca fascicularis) monkeys. I. Abnormal concentrations of two proteins in the retina. Exp. Eye Res., 62, 211–219.PubMedCrossRefGoogle Scholar
  29. Odievre, M. H., MAChretien, D., Munnich, A., Robinson, B. H., Dumoulin, R.,Masmoudi, S. et al., (2005). A novel mutation in the dihydrolipoamide dehydrogenase E3 subunit gene (DLD) resulting in an atypical form of alpha-ketoglutarate dehydrogenase deficiency. Hum. Mutat., 25, 323–324.PubMedCrossRefGoogle Scholar
  30. Padiath, Q. S., Saigoh, K., Schiffmann, R., Asahara, H., Yamada, T.,Koeppen, A. et al., (2006). Lamin B1 duplications cause autosomal dominant leukodystrophy. Nat. Genet., 38, 1114–1123.PubMedCrossRefGoogle Scholar
  31. Pollak, D., Weitzdoerfer, R., Yang, Y. W., Prast, H., Hoeger, H., & Lubec, G. (2005). Cerebellar protein expression in three different mouse strains and their relevance for motor performance. Neurochem. Int., 46, 19–29.PubMedCrossRefGoogle Scholar
  32. Reid, T. W., Albert, D. M., Rabson, A. S., Russell, P., Craft, J., Chu, E.W. et al., (1974). Characteristics of an established cell line of retinoblastoma. J. Natl. Cancer Inst., 53, 347–360.PubMedGoogle Scholar
  33. Roque, R. S., Agarwal, N., Wordinger, R. J., Brun, A. M., Xue, Y., Huang, L. C. et al., (1997). Human papillomavirus-16 E6/E7 transfected retinal cell line expresses the Muller cell phenotype. Expe. Eye Res., 64, 519–527.CrossRefGoogle Scholar
  34. Seddon, J. M. & Chen, C. A. (2004). The epidemiology of age-related macular degeneration. Int. Ophthalmol. Clin., 44, 17–39.PubMedCrossRefGoogle Scholar
  35. Soderberg, M., Raffalli-Mathieu, F., & Lang, M. A. (2002). Inflammation modulates the interaction of heterogeneous nuclear ribonucleoprotein (hnRNP) I/polypyrimidine tract binding protein and hnRNP L with the 3’untranslated region of the murine inducible nitric-oxide synthase mRNA. Mol. Pharmacol., 62, 423–431.PubMedCrossRefGoogle Scholar
  36. Son, Y. S., Park, J. H., Kang, Y. K., Park, J. S., Choi, H. S., Lim, J. Y. et al., (2005). Heat shock 70-kDa protein 8 isoform 1 is expressed on the surface of human embryonic stem cells and downregulated upon differentiation. Stem Cells, 23, 1502–1513.PubMedCrossRefGoogle Scholar
  37. Steeghs, K., Oerlemans, F., & Wieringa, B. (1995). Mice deficient in ubiquitous mitochondrial creatine kinase are viable and fertile. Biochimica et Biophysica Acta, 1230, 130–138.PubMedCrossRefGoogle Scholar
  38. Tan, E., Ding, X. Q., Saadi, A., Agarwal, N., Naash, M. I., & Al-Ubaidi, M. R. (2004). Expression of cone-photoreceptor-specific antigens in a cell line derived from retinal tumors in transgenic mice. Invest Ophthalmol. Vis. Sci., 45, 764–768.PubMedCrossRefGoogle Scholar
  39. Tanito, M., Haniu, H., Elliott, M. H., Singh, A. K., Matsumoto, H., & Anderson, R. E. (2006). Identification of 4-hydroxynonenal-modified retinal proteins induced by photooxidative stress prior to retinal degeneration. Free Radic. Biol. Med., 41, 1847–1859.PubMedCrossRefGoogle Scholar
  40. Weitzdoerfer, R., Fountoulakis, M., & Lubec, G. (2001). Aberrant expression of dihydropyrimidinase related proteins-2,-3 and -4 in fetal Down syndrome brain. J. Neural Transm. Suppl., 61, 95–107.PubMedGoogle Scholar
  41. Wiechmann, A. F. (1996). Recoverin in cultured human retinoblastoma cells: enhanced expression during morphological differentiation. J. Neurochem., 67, 105–110.PubMedCrossRefGoogle Scholar
  42. Wilhelm, M., Straznicky, C., & Gabriel, R. (1992). Neuron-specific enolase-like immunoreactivity in the vertebrate retina: selective labelling of Muller cells in Anura. Histochemistry, 98, 243–252.PubMedCrossRefGoogle Scholar
  43. Yang, J. W., Czech, T., Felizardo, M., Baumgartner, C., & Lubec, G. (2006). Aberrant expression of cytoskeleton proteins in hippocampus from patients with mesial temporal lobe epilepsy. Amino. Acids, 30, 477–493.PubMedCrossRefGoogle Scholar
  44. Yoshida, T., Makino, Y., & Tamura, T. (1999). Association of the ratheterogeneous nuclear RNA-ribonucleoprotein F with TATA-bindingprotein. FEBS Lett., 457, 251–254.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Muayyad R. Al-Ubaidi
    • 1
  • Hiroyuki Matsumoto
    • 2
  • Sadamu Kurono
    • 2
  • Anil Singh
    • 2
  1. 1.Department of Cell BiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityUSA
  2. 2.Department of Biochemistry and Molecular BiologyUniversity of Oklahoma Health Sciences CenterOklahoma City

Personalised recommendations