Neurotrophins Induce Neuroprotective Signaling in the Retinal Pigment Epithelial Cell by Activating the Synthesis nl of the Anti-inflammatory and Anti-apoptotic Neuroprotectin D1

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 613)

The integrity of retinal pigment epithelial cells is critical for photoreceptor cell survival and vision. The essential omega-3 fatty acid, docosahexaenoic acid, attains its highest concentration in the human body in photoreceptors. Docosahexaenoic acid is the essential precursor of neuroprotectin D1 (NPD1). NPD1 acts against apoptosis mediated by A2E, a byproduct of phototransduction that becomes toxic when it accumulates in aging retinal pigment epithelial (RPE) cells and in some inherited retinal degenerations. Here we also describe that neurotrophins, mainly pigment epithelium-derived factor, induce NPD1 synthesis and its polarized apical secretion, suggesting paracrine and autocrine bioactivity of this lipid mediator. In addition, DHA elicits a concentration-dependent and selective potentiation of pigment epithelial-derived factor-stimulated NPD1 synthesis and release through the apical RPE cell surface. The bioactivity of signaling activated by PEDF and DHA demonstrates synergistic cytoprotection when cells were challenged with oxidative stress, resulting in concomitant NPD1 synthesis.


Retinal Pigment Epithelial Cell Human Retinal Pigment Epithelial Cell Primary Retinal Pigment Epithelial Interphotoreceptor Matrix Primary Retinal Pigment Epithelial Cell 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bazan, N.G., 2006, Cell survival matters: docosahexaenoic acid signaling, neuroprotection and photoreceptors, Trends Neurosci. 29:263.PubMedCrossRefGoogle Scholar
  2. Bhutto, I. A., McLeod, D. S., Hasegawa, T., Kim, S. Y., Merges, C., Tong, P., and Lutty, G. A., 2006, Pigment epithelium-derived factor (PEDF) and vascular endothelial growth factor (VEGF) in aged human choroid and eyes with age-related macular degeneration, Exp Eye Res. 82:99.PubMedCrossRefGoogle Scholar
  3. Bui, T. V., Han, Y., Radu, R. A., Travis, G. H., and Mata, N. L., 2006, Characterization of native retinal fluorophores involved in biosynthesis of A2E and lipofuscin-associated retinopathies, J Biol Chem. 281:18112.PubMedCrossRefGoogle Scholar
  4. Cideciyan, A. V., Aleman, T. S., Swider, M., Schwartz, S. B., Steinberg, J. D., Brucker, A. J., Maguire, A. M., Bennett, J., Stone, E. M., and Jacobson, S. G., 2004, Mutations in ABCA4 result in accumulation of lipofuscin before slowing of the retinoid cycle: a reappraisal of the human disease sequence, Hum Mol Genet. 13:525.PubMedCrossRefGoogle Scholar
  5. Hu, J. and Bok, D., 2001, A cell culture medium that supports the differentiation of human retinal pigment epithelium into functionally polarized monolayers, Mol Vis. 7:14.PubMedGoogle Scholar
  6. Kannan, R., Zhang, N., Sreekumar, P. G., Spee, C. K., Rodriguez, A., Barron, E., and Hinton, D. R., 2006, Stimulation of apical and basolateral VEGF-A and VEGF-C secretion by oxidative stress in polarized retinal pigment epithelial cells, Mol Vis. 12:1649.PubMedGoogle Scholar
  7. LaVail, M. M., Unoki, K., Yasumura, D., Matthes, M. T., Yancopoulos, G. D., and Steinberg R. H., 1992, Multiple growth factors, cytokines, and neurotrophins rescue photoreceptors from the damaging effects of constant light, Proc Natl Acad Sci USA. 89:11249.PubMedCrossRefGoogle Scholar
  8. LaVail, M. M., Yasumura, D., Matthes, M. T., Lau-Villacorta, C., Unoki, K., Sung, C. H., and Steinberg, R. H., 1998, Protection of mouse photoreceptors by survival factors in retinal degenerations, Invest Ophthalmol Vis Sci. 39:592.PubMedGoogle Scholar
  9. Lukiw W. J., Cui, J. G., Marcheselli, V. L., Bodker, M., Botkjaer, A., Gotlinger, K., Serhan, C. N., and Bazan, N. G., 2005, A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease, J Clin Invest. 115:2774.PubMedCrossRefGoogle Scholar
  10. Mukherjee, P. K., Marcheselli, V. L., Serhan, C. N., and Bazan, N. G., 2004, Neuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress, Proc Natl Acad Sci USA. 101:8491.PubMedCrossRefGoogle Scholar
  11. Mukherjee, P. K., Marcheselli, V. L., Barreiro, S., Hu, J., Bok, D., and Bazan, N. G., 2007 Neurotrophins enhance retinal pigment epithelial cell survival through neuroprotectin D1 signaling, Proc Natl Acad Sci USA. 104:13152.PubMedCrossRefGoogle Scholar
  12. Politi, L. E., Rotstein, N. P., and Carri, N. G., 2001, Effect of GDNF on neuroblast proliferation and photoreceptor survival: additive protection with docosahexaenoic acid, Invest Ophthalmol Vis Sci. 42:3008.PubMedGoogle Scholar
  13. Radu, R. A., Mata, N. L., Bagla, A., and Travis, G. H., 2004, Light exposure stimulates formation of A2E oxiranes in a mouse model of Stargardt’s macular degeneration, Proc Natl Acad Sci USA. 101:5928.PubMedCrossRefGoogle Scholar
  14. Rattner, A. and Nathans, J., 2006, Macular degeneration: recent advances and therapeutic opportunities, Nat Rev Neurosci. 7:860.PubMedCrossRefGoogle Scholar
  15. Rodriguez de Turco, E. B., Deretic, D., Bazan, N.G., and Papermaster, D. S., 1997, Post-Golgi vesicles cotransport docosahexaenoyl-phospholipids and rhodopsin during frog photoreceptor membrane biogenesis, J Biol Chem. 272:10491.PubMedCrossRefGoogle Scholar
  16. Sparrow, J. R., Vollmer-Snarr, H. R., Zhou, J., Jang, Y. P., Jockusch, S., Itagaki, Y., and Nakanishi, K., 2003, A2E-epoxides damage DNA in retinal pigment epithelial cells. Vitamin E and other antioxidants inhibit A2E-epoxide formation, J Biol Chem. 278:18207.PubMedCrossRefGoogle Scholar
  17. Tombran-Tink, J. and Barnstable, C. J., 2003, PEDF: a multifaceted neurotrophic factor, Nat Rev Neurosci 4:628.PubMedCrossRefGoogle Scholar
  18. Valter, K., Bisti, S., Gargini, C., Di Loreto, S., Maccarone, R., Cervetto, L., and Stone, J., 2005, Time course of neurotrophic factor upregulation and retinal protection against light-induced damage after optic nerve section, Invest Ophthalmol Vis Sci. 46:1748.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Neuroscience Center of Excellence and Department of OphthalmologyLouisiana State University Health Sciences CenterNew OrleansUSA

Personalised recommendations