Advertisement

Mutations in Known Genes Account for 58% of Autosomal Dominant Retinitis Pigmentosa (adRP)

  • Stephen P. Daiger
  • Lori S. Sullivan
  • Anisa I. Gire
  • David G. Birch
  • John R. Heckenlively
  • Sara J. Bowne
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 613)

Inherited retinal diseases such as autosomal dominant retinitis pigmentosa (adRP) are strikingly complex, with mutations in many different genes causing the same disease, with many different mutations in each gene, and with different clinical consequences resulting from the same mutation, even within the same family. for example, mutations in sixteen genes are known to cause adRP and an additional two adRP genes have been mapped but not identified yet (Table 1). This raises two questions: what fraction of adRP cases are accounted for by mutations in known genes, and what accounts for the remaining cases?

Keywords

Retinitis Pigmentosa Linkage Testing Autosomal Dominant Retinitis Pigmentosa Vitelliform Macular Dystrophy PRPF31 Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Daiger, S. P., Bowne, S. J., and Sullivan, L. S., 2007, Perspective on genes and mutations causing retinitis pigmentosa, Arch. Ophthalmol. 125: 151–158.PubMedCrossRefGoogle Scholar
  2. Felbor, U., Schilling, H., and Weber, B. H., 1997, Adult vitelliform macular dystrophy is frequently associated with mutations in the peripherin/RDS gene, Hum. Mutat. 10: 301–309.PubMedCrossRefGoogle Scholar
  3. Grantham, R., 1974, Amino acid difference formula to help explain protein evolution, Science 185: 862–864.PubMedCrossRefGoogle Scholar
  4. Kajiwara, K., Sandberg, M. A., Berson, E. L., and Dryja, T. P., 1993, A null mutation in the human peripherin/RDS gene in a family with autosomal dominant retinitis punctata albescens, Nat. Genet. 3: 208–212.PubMedCrossRefGoogle Scholar
  5. Lathrop, G. M., Lalouel, J. M., Julier, C., and Ott, J., 1984, Strategies for multilocus linkage analysis in humans, Proc. Natl. Acad. Sci. USA 81: 3443–3446.PubMedCrossRefGoogle Scholar
  6. Mears, A. J., Hiriyanna, S., Vervoort, R., Yashar, B., Gieser, L., Fahrner, S., Daiger, S. P., Heckenlively, J. R., Sieving, P. A., Wright, A. F., and Swaroop, A., 2000, Remapping of the RP15 locus for X-linked cone-rod degeneration to Xp11.4-p21.1, and identification of a de novo insertion in the RPGR exon ORF15, Am. J. Hum. Genet. 67: 1000–1003.PubMedCrossRefGoogle Scholar
  7. Ng, P. C., and Henikoff, S., 2003, SIFT: Predicting amino acid changes that affect protein function, Nucleic Acids Res. 31: 3812–3814.PubMedCrossRefGoogle Scholar
  8. Ramensky, V., Bork, P., and Sunyaev, S., 2002, Human non-synonymous SNPs: server and survey, Nucleic Acids Res. 30: 3894–3900.PubMedCrossRefGoogle Scholar
  9. Reese, M. G., Eeckman, F. H., Kulp, D., and Haussler, D., 1997, Improved splice site detection in Genie, J. Comput. Biol. 4: 311–323.PubMedCrossRefGoogle Scholar
  10. Rozet, J. M., Perrault, I., Gigarel, N., Souied, E., Ghazi, I., Gerber, S., Dufier, J. L., Munnich, A., and Kaplan, J., 2002, Dominant X linked retinitis pigmentosa is frequently accounted for by truncating mutations in exon ORF15 of the RPGR gene, J. Med. Genet. 39: 284–285.PubMedCrossRefGoogle Scholar
  11. Schouten, J. P., McElgunn, C. J., Waaijer, R., Zwijnenburg, D., Diepvens, F., and Pals, G., 2002, Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification, Nucleic Acids Res. 30: e57.PubMedCrossRefGoogle Scholar
  12. Sears, J. E., Aaberg, T. A., Sr., Daiger, S. P., and Moshfeghi, D. M., 2001, Splice site mutation in the peripherin/RDS gene associated with pattern dystrophy of the retina, Am. J. Ophthalmol. 132: 693–699.PubMedCrossRefGoogle Scholar
  13. Sullivan, L. S., Bowne, S. J., Birch, D. G., Hughbanks-Wheaton, D., Heckenlively, J. R., Lewis, R. A., Garcia, C. A., Ruiz, R. S., Blanton, S. H., Northrup, H., Gire, A. I., Seaman, R., Duzkale, H., Spellicy, C. J., Zhu, J., Shankar, S. P., and Daiger, S. P., 2006a, Prevalence of disease-causing mutations in families with autosomal dominant retinitis pigmentosa (adRP): a screen of known genes in 200 families, Invest. Ophthalmol. Vis. Sci. 47: 3052–3064.Google Scholar
  14. Sullivan, L. S., Bowne, S. J., Seaman, C. R., Blanton, S. H., Lewis, R. A., Heckenlively, J. R., Birch, D. G., Hughbanks-Wheaton, D., and Daiger, S. P., 2006b, Genomic rearrangements of the PRPF31 gene account for 2.5% of autosomal dominant retinitis pigmentosa, Invest. Ophthalmol. Vis. Sci. 47: 4579–4588.Google Scholar
  15. Sullivan, L. S., Bowne, S. J., Shankar, S. P., Blanton, S. H., Heckenlively, J. R., Birch, D. G., Wheaton, D. H., Pelias, M. Z., and Daiger, S. P., 2005, Linkage mapping in families with autosomal dominant retinitis pigmentosa (adRP), Invest. Ophthalmol. Vis. Sci. 46: E-Abstract 2293.Google Scholar
  16. Vervoort, R., Lennon, A., Bird, A. C., Tulloch, B., Axton, R., Miano, M. G., Meindl, A., Meitinger, T., Ciccodicola, A., and Wright, A. F., 2000, Mutational hot spot within a new RPGR exon in X-linked retinitis pigmentosa, Nat. Genet. 25: 462–466.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Stephen P. Daiger
    • 1
  • Lori S. Sullivan
    • 2
  • Anisa I. Gire
    • 2
  • David G. Birch
    • 3
  • John R. Heckenlively
    • 4
  • Sara J. Bowne
    • 2
  1. 1.Human Genetics Center, School of Public Health, and Dept. of OphthalmologyThe Univ. of TexasHoustonUSA
  2. 2.Human Genetics Center, School of Public Health, The University of TexasHoustonUSA
  3. 3.Anderson Research Center, Retina Foundation of the SouthwestDallasUSA
  4. 4.Kellogg Eye Center, University of MichiganAnn ArborUSA

Personalised recommendations