Characterization of Gene Expression Profiles of Normal Canine Retina and Brain Using a Retinal cDNA Microarray

  • Gerardo L. Paez
  • Barbara Zangerl
  • Kimberly Sellers
  • Gregory M. Acland
  • Gustavo D. Aguirre
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 613)

Microarrays have been useful in the simultaneous analysis of transcript levels of thousands of genes in different physiological states of an organism, tissue or cell (Shalon et al., 1996; Schena et al., 1996). Construction of microarrays is most efficient when information is utilized from annotated genomes or expressed sequence tags (ESTs), and has led to new insights into animal development, cancer, infectious diseases and aging (Yoshida et al., 2002; Whitney et al., 1999; Alizadeh et al., 2000). A major limitation of the technique is the analysis of sequences represented on the array. This disadvantage is particularly problematic when analyzing highly specialized tissues such as the retina due to the repertoire of uniquely or preferentially expressed genes contributing to its structure and function.


Retinal Degeneration Median Absolute Deviation Normal Retina Loess Normalization Retinitis Pigmentosa GTPase Regulator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aguirre, G.D. and Acland, G.M. Models, mutants and man: Searching for unique phenotypes and genes in the dog model of inherited retinal degeneration. The Dog and its Genome. Cold Spring Harbor 2006; chapter 16, 291–325.Google Scholar
  2. Alizadeh M, Gelfman CM, Bench SR, Hjelmeland LM. Expression and splicing of FGF receptor mRNAs during APRE-19 cell differentiation in vitro. Invest Ophthalmol Vis Sci. 2000; 41(8):2357–62.PubMedGoogle Scholar
  3. Buraczynska M, Mears AJ, Zareparst S, Farjo R, Filippova E, Yuan Y, MacNee SP, Hughes B, Swaroop A. Gene expression profile of native human retinal pigment epithelium. IOVS 2002; 43(9):603–607.Google Scholar
  4. Chowers I, Liu D, Farkas, RH, Gunatilaka TL, Hackman AS, Bernstein SL, Campochiaro PA, Parmigiani G, Zack DJ. Gene expression variation in the adult human retina. Human Molecular Genetics 2003; 12(22):2881–2893.PubMedCrossRefGoogle Scholar
  5. Dudoit S, and Fridlyand J. A prediction-based resampling method for estimating the number of clusters in a dataset. Genome Biol. 2002 Jun 25; 3(7): RESEARCH0036. Epub 2002 June 25.Google Scholar
  6. Paez GL, Sellers KF, Band M, Acland GM, Zangerl B, Aguirre GD. Characterization of gene expression profiles of normal canine retina and brain using a retinal cDNA microarray. Mol Vis 2006 Sep 7; 12:1048–1056.PubMedGoogle Scholar
  7. Schena M, Shalon D, Heller R, Chai A, Brown PO, Davis RW. Parallel human genome analysis: microarray-based expression monitoring of 1000 genes. Proc Natl Acad Sci U S A. 1996; 1; 93(20):10614–9.PubMedCrossRefGoogle Scholar
  8. Shalon D, Smith SJ, Brown PO. A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. Genome Res 1996; 6(7):639–645.PubMedCrossRefGoogle Scholar
  9. Swaroop A, Zack. DJ Transcriptome analysis of the retina. Genome Biology 2002; 3(8): 1022.1–1022.4.Google Scholar
  10. Whitney LW, Becker KG, Tresser NJ, Caballero-Ramos CI, Munson PJ, Prabhu VV, Trent JM, McFarland HF, Biddison WE. Analysis of gene expression in mutiple sclerosis lesions using cDNA microarrays. Ann Neurol 1999; 46(3):425–428.PubMedCrossRefGoogle Scholar
  11. Yoshida S, Yashar BM, Hiriyanna S, Swaroop A. Microarray analysis of gene expression in the aging human retina. Invest Ophthalmol Vis Sci. 2002; 43(8):2554–2560.PubMedGoogle Scholar
  12. Zangerl B, Sun Q, et al. Development and characterization of a normalized canine retinal cDNA library for genomic and expression studies. IOVS 2006 Jun; 47(6):2632–2638.Google Scholar
  13. Zhao Y, Hong DH, Pawlyk B, Yue G, Adamian M, Grynberg M, Godzik A, Li T. The retinitis pigmentosa GTPase regulator (RPGR)- interacting protein: subserving RPGR function and participating in disk morophogenesis. Proc Natl Acad Sci USA. 2003 Apr 1; 100(7):3965–70. Epub 2003 Mar 21.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Gerardo L. Paez
    • 1
  • Barbara Zangerl
    • 2
  • Kimberly Sellers
    • 3
  • Gregory M. Acland
    • 4
  • Gustavo D. Aguirre
    • 5
  1. 1.Department of Clinical Studies PhiladelphiaSchool of Veterinary Medicine, University of Pennsylvania Philadelphia
  2. 2.Department of Clinical Studies PhiladelphiaSchool of Veterinary Medicine, University of Pennsylvania Philadelphia.
  3. 3.Department of MathematicsGeorgetown UniversityDC
  4. 4.Baker InstituteCornell UniversityIthaca
  5. 5.Department of Clinical Studies Philadelphia, School of Veterinary MedicineUniversity of Pennsylvania Philadelphia

Personalised recommendations