Skip to main content

Adeno-Associated Viral Vectors and the Retina

  • Chapter
Book cover Recent Advances in Retinal Degeneration

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 613))

There are a variety of diseases of the retina arising from genetic and non-genetic causes, or a combination of both, that lead to the loss of vision. The retina is a prime location for gene therapy because of its accessibility, immune privileged status (Caspi, 2006), and susceptible cell types. Several strategies have been attempted to rescue retinal disease, including gene replacement (Acland et al., 2001), gene knockdown with both ribozymes (Gorbatyuk et al., 2007) and siRNA (Kiang et al., 2005), and therapeutic gene supplementation (Deng et al., 2005).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acland, G.M., Aguirre, G.D., Bennett, J., Aleman, T.S., Cideciyan, A.V., Bennicelli, J. et al. 2005, Long-term restoration of rod and cone vision by single dose rAAV-mediated gene transfer to the retina in a canine model of childhood blindness. Mol. Ther. 12: 1072&–1082.

    Article  PubMed  CAS  Google Scholar 

  • Acland, G.M., Aguirre, G.D., Ray, J., Zhang, Q., Aleman, T.S., Cideciyan, A.V. et al. 2001, Gene therapy restores vision in a canine model of childhood blindness. Nat. Genet. 28: 92&–95.

    Article  PubMed  CAS  Google Scholar 

  • Atchison, R.W., Casto, B.C., and Hammon, W.M. 1965, Adenovirus-associated defective virus particles. Science 149: 754&–756.

    Article  PubMed  CAS  Google Scholar 

  • Auricchio, A., Kobinger, G., Anand, V., Hildinger, M., O’Connor, E., Maguire, A.M. et al. 2001, Exchange of surface proteins impacts on viral vector cellular specificity and transduction characteristics: the retina as a model. Hum. Mol. Genet. 10: 3075&–3081.

    Article  PubMed  CAS  Google Scholar 

  • Bantel-Schaal, U. and zur Hausen, H. 1984, Characterization of the DNA of a defective human parvovirus isolated from a genital site. Virology 134: 52&–63.

    Article  PubMed  CAS  Google Scholar 

  • Berns, K.I. and Giraud, C. 1996, Biology of adeno-associated virus. Curr. Top. Microbiol. Immunol. 218: 1&–23.

    PubMed  CAS  Google Scholar 

  • Boulanger, A., Liu, S., Henningsgaard, A.A., Yu,S., and Redmond, T.M. 2000, The upstream region of the Rpe65 gene confers retinal pigment epithelium-specific expression in vivo and in vitro and contains critical octamer and E-box binding sites. J. Biol. Chem. 275: 31274&–31282.

    Article  PubMed  CAS  Google Scholar 

  • Caspi, R.R. 2006, Ocular autoimmunity: the price of privilege? Immunol. Rev. 213: 23&–35.

    Article  PubMed  Google Scholar 

  • Choi, V.W., McCarty, D.M., and Samulski, R.J. 2005, AAV hybrid serotypes: improved vectors for gene delivery. Curr. Gene Ther. 5: 299&–310.

    Article  PubMed  CAS  Google Scholar 

  • Deng, W.T., Yan, Z., Dinculescu, A., Pang, J., Teusner, J.T., Cortez, N.G. et al. 2005, Adeno-associated virus-mediated expression of vascular endothelial growth factor peptides inhibits retinal neovascularization in a mouse model of oxygen-induced retinopathy. Hum. Gene Ther. 16: 1247&–1254.

    Article  PubMed  CAS  Google Scholar 

  • Dinculescu, A., Glushakova, L., Min, S.H., and Hauswirth, W.W. 2005, Adeno-associated virus-vectored gene therapy for retinal disease. Hum. Gene Ther. 16: 649&–663.

    Article  PubMed  CAS  Google Scholar 

  • Esumi, N., Oshima, Y., Li,Y., Campochiaro, P.A., and Zack, D.J. 2004, Analysis of the VMD2 promoter and implication of E-box binding factors in its regulation. J. Biol. Chem. 279: 19064&–19073.

    Article  PubMed  CAS  Google Scholar 

  • Flannery, J.G., Zolotukhin, S., Vaquero, M.I., LaVail, M.M., Muzyczka, N., and Hauswirth, W.W. 1997, Efficient photoreceptor-targeted gene expression in vivo by recombinant adeno-associated virus. Proc. Natl. Acad. Sci. U. S. A. 94: 6916&–6921.

    Article  PubMed  CAS  Google Scholar 

  • Glushakova, L.G., Timmers, A.M., Pang, J., Teusner, J.T., and Hauswirth, W.W. 2006, Human blue-opsin promoter preferentially targets reporter gene expression to rat s-cone photoreceptors. Invest Ophthalmol. Vis. Sci. 47: 3505&–3513.

    Article  PubMed  Google Scholar 

  • Gorbatyuk, M., Justilien, V., Liu, J., Hauswirth, W.W., and Lewin, A.S. 2007, Preservation of photoreceptor morphology and function in P23H rats using an allele independent ribozyme. Exp. Eye Res. 84: 44&–52.

    Article  PubMed  CAS  Google Scholar 

  • Gu, S.M., Thompson, D.A., Srikumari, C.R., Lorenz, B., Finckh, U., Nicoletti, A. et al. 1997, Mutations in RPE65 cause autosomal recessive childhood-onset severe retinal dystrophy. Nat. Genet. 17: 194&–197.

    Article  PubMed  CAS  Google Scholar 

  • Guy, J., Qi,X., Muzyczka, N., and Hauswirth, W.W. 1999, Reporter expression persists 1 year after adeno-associated virus-mediated gene transfer to the optic nerve. Arch. Ophthalmol. 117: 929&–937.

    PubMed  CAS  Google Scholar 

  • Hauswirth, W.W. and Berns, K.I. 1977, Origin and termination of adeno-associated virus DNA replication. Virology 78: 488&–499.

    Article  PubMed  CAS  Google Scholar 

  • Hermonat, P.L. and Muzyczka, N. 1984, Use of adeno-associated virus as a mammalian DNA cloning vector: transduction of neomycin resistance into mammalian tissue culture cells. Proc. Natl. Acad. Sci. U. S. A. 81: 6466&–6470.

    Article  PubMed  CAS  Google Scholar 

  • Huttner, N.A., Girod, A., Perabo, L., Edbauer, D., Kleinschmidt, J.A., Buning, H., and Hallek, M. 2003, Genetic modifications of the adeno-associated virus type 2 capsid reduce the affinity and the neutralizing effects of human serum antibodies. Gene Ther. 10: 2139&–2147.

    Article  PubMed  CAS  Google Scholar 

  • Jacobson, S.G., Acland, G.M., Aguirre, G.D., Aleman, T.S., Schwartz, S.B., Cideciyan, A.V. et al. 2006a, Safety of recombinant adeno-associated virus type 2-RPE65 vector delivered by ocular subretinal injection. Mol. Ther. 13: 1074&–1084.

    Google Scholar 

  • Jacobson, S.G., Boye, S.L., Aleman, T.S., Conlon, T.J., Zeiss, C.J., Roman, A.J. et al. 2006b, Safety in nonhuman primates of ocular AAV2-RPE65, a candidate treatment for blindness in Leber congenital amaurosis. Hum. Gene Ther. 17: 845&–858.

    Google Scholar 

  • Kiang, A.S., Palfi, A., Ader, M., Kenna, P.F., Millington-Ward, S., Clark, G. et al. 2005, Toward a gene therapy for dominant disease: validation of an RNA interference-based mutation-independent approach. Mol. Ther. 12: 555&–561.

    Article  PubMed  CAS  Google Scholar 

  • Marlhens, F., Bareil, C., Griffoin, J.M., Zrenner, E., Amalric, P., Eliaou, C. et al. 1997, Mutations in RPE65 cause Leber’s congenital amaurosis. Nat. Genet. 17: 139&–141.

    Article  PubMed  CAS  Google Scholar 

  • McCarty, D.M., Young, S.M., Jr., and Samulski, R.J. 2004, Integration of adeno-associated virus (AAV) and recombinant AAV vectors. Annu. Rev. Genet. 38: 819&–845.

    Article  PubMed  CAS  Google Scholar 

  • Min, S.H., Molday, L.L., Seeliger, M.W., Dinculescu, A., Timmers, A.M., Janssen, A. et al. 2005, Prolonged recovery of retinal structure/function after gene therapy in an Rs1h-deficient mouse model of x-linked juvenile retinoschisis. Mol. Ther. 12: 644&–651.

    Article  PubMed  CAS  Google Scholar 

  • Muzyczka, N. and Berns, K.I. 2001, Chapter 69, Fields Virology. Lippincott Williams & Wilkins.

    Google Scholar 

  • Rolling, F. 2004, Recombinant AAV-mediated gene transfer to the retina: gene therapy perspectives. Gene Ther. 11 Suppl 1: S26&–S32.

    Article  PubMed  CAS  Google Scholar 

  • Sun, H., Tsunenari, T., Yau, K.W., and Nathans, J. 2002, The vitelliform macular dystrophy protein defines a new family of chloride channels. Proc. Natl. Acad. Sci. U. S. A. 99: 4008&–4013.

    Article  PubMed  CAS  Google Scholar 

  • Warrington, K.H., Jr. and Herzog, R.W. 2006, Treatment of human disease by adeno-associated viral gene transfer. Hum. Genet. 119: 571&–603.

    Article  PubMed  CAS  Google Scholar 

  • Wu, Z., Asokan, A., and Samulski, R.J. 2006, Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol. Ther. 14: 316&–327.

    Article  PubMed  CAS  Google Scholar 

  • Yue, Y. and Duan, D. 2003, Double strand interaction is the predominant pathway for intermolecular recombination of adeno-associated viral genomes. Virology 313: 1&–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Alexander .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Alexander, J.J., Hauswirth, W.W. (2008). Adeno-Associated Viral Vectors and the Retina. In: Anderson, R.E., LaVail, M.M., Hollyfield, J.G. (eds) Recent Advances in Retinal Degeneration. Advances in Experimental Medicine and Biology, vol 613. Springer, New York, NY. https://doi.org/10.1007/978-0-387-74904-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-74904-4_13

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-74902-0

  • Online ISBN: 978-0-387-74904-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics