Advertisement

In vitro Analysis of Ribozyme-mediated Knockdown of an ADRP Associated Rhodopsin Mutation

  • Dibyendu Chakraborty
  • Patrick Whalen
  • Alfred S. Lewin
  • Muna I. Naash
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 613)

Retinitis Pigmentosa (RP) is a group of retinal degenerative diseases that are characterized mainly by the loss of rod photoreceptor cells. RP can be sub divided into 3 classes, autosomal dominant, autosomal recessive, and X- linked RP, where the mutant gene exists on the sex chromosome (X) (Hartong et al., 2006; Wang et al., 2005). Mutations in rhodopsin are the most common cause of the autosomaldominant form of RP (ADRP). More than 100 mutations in rhodopsin account for approximately 30 of ADRP cases with varying severity of visual impairment (Dryja et al., 1991). Based on in vitro studies (Sung et al., 1993; Sung et al., 1991), rhodopsin mutations that are similar to wild-type in terms of expression levels, folding and formation of functional photopigment are considered Class 1 mutations.

Keywords

Retinitis Pigmentosa Retinal Degeneration Opsin Gene Hammerhead Ribozyme Photoreceptor Degeneration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blake, K. R., Murakami, A., and Miller, P. S., 1985, Inhibition of rabbit globin mRNA translation by sequence-pecific oligodeoxyribonucleotides, Biochemistry. 24:6132.PubMedCrossRefGoogle Scholar
  2. Bumcrot, D., Manoharan, M., Koteliansky, V., and Sah, D. W., 2006, RNAi therapeutics: a potential new class of pharmaceutical drugs, Nat Chem Biol. 2:711PubMedCrossRefGoogle Scholar
  3. Cashman, S. M., Binkley, E. A., and Kumar-Singh, R.,2005, Towards mutation-independent silencing of genes involved in retinal degeneration by RNA interference, Gene Ther. 12:1223.PubMedCrossRefGoogle Scholar
  4. Drenser, K. A., Timmers, A. M., Hauswirth, W. W., and Lewin, A. S.,1998, Ribozyme-targeted destruction of RNA associated with autosomal-dominant retinitis pigmentosa, Invest Ophthalmol Vis Sci. 39:681.PubMedGoogle Scholar
  5. Dryja, T. P., Hahn, L. B., Cowley, G. S., McGee, T. L., and Berson, E. L., 1991, Mutation spectrum of the rhodopsin gene among patients with autosomal dominant retinitis pigmentosa, Proc Natl Acad Sci U S A. 88:9370.PubMedCrossRefGoogle Scholar
  6. Dryja, T. P., McGee, T. L., Hahn, L. B., Cowley, G. S., Olsson, J. E., Reichel, E., Sandberg, M. A., and Berson, E. L., 1990, Mutations within the rhodopsin gene in patients with autosomal dominant retinitis pigmentosa, N Engl J Med. 323:1302.PubMedCrossRefGoogle Scholar
  7. Esteban, J. A., Walter, N. G., Kotzorek, G., Heckman, J. E., and Burke, J. M., 1998, Structural basis for heterogeneous kinetics: reengineering the hairpin ribozyme, Proc Natl Acad Sci U S A. 95:6091.PubMedCrossRefGoogle Scholar
  8. Frederick, J. M., Krasnoperova, N. V., Hoffmann, K., Church-Kopish, J., Ruther, K., Howes, K., Lem, J., and Baehr, W., 2001, Mutant rhodopsin transgene expression on a null background, Invest Ophthalmolo Vis Sci. 42:826Google Scholar
  9. Fritz, J. J., Gorbatyuk, M., Lewin, A. S., and Hauswirth, W. W., 2004, Design and validation of therapeutic hammerhead ribozymes for autosomal dominant diseases, Methods Mol Biol. 252:221.PubMedGoogle Scholar
  10. Gorbatyuk, M., Justilien, V., Liu, J., Hauswirth, W. W., and Lewin, A. S., 2007, Preservation of photoreceptor morphology and function in P23H rats using an allele independent ribozyme, Exp Eye Res. 84:44.PubMedCrossRefGoogle Scholar
  11. Gorbatyuk, M. S., Pang, J. J., Thomas, J., Jr., Hauswirth, W. W., and Lewin, A. S., 2005, Knockdown of wild-type mouse rhodopsin using an AAV vectored ribozyme as part of an RNA replacement approach, Mol Vis. 11:648.PubMedGoogle Scholar
  12. Goto, Y., Peachey, N. S., Ziroli, N. E., Seiple, W. H., Gryczan, C., Pepperberg, D. R., and Naash, M. I., 1996, Rod phototransduction in transgenic mice expressing a mutant opsin gene, J Opt Soc Am A Opt Image Sci Vis. 13:577.CrossRefGoogle Scholar
  13. Grasby, J. A., Mersmann, K., Singh, M., and Gait, M. J., 1995, Purine functional groups in essential residues of the hairpin ribozyme required for catalytic cleavage of RNA, Biochemistry. 34:4068.PubMedCrossRefGoogle Scholar
  14. Hampel, A., Tritz, R., Hicks, M., and Cruz, P., 1990, ’Hairpin’ catalytic RNA model: evidence for helices and sequence requirement for substrate RNA, Nucleic Acids Res. 18:299.PubMedCrossRefGoogle Scholar
  15. Hartong, D. T., Berson, E. L., and Dryja, T. P., 2006, Retinitis pigmentosa, Lancet. 368:1795.PubMedCrossRefGoogle Scholar
  16. Inoue, T., Sullivan, F. X., and Cech, T. R., 1985, Intermolecular exon ligation of the rRNA precursor of Tetrahymena: oligonucleotides can function as 5’ exons, Cell. 43:431PubMedCrossRefGoogle Scholar
  17. Joseph, S., and Burke, J. M., 1993, Optimization of an anti-HIV hairpin ribozyme by in vitro selection, J Biol Chem. 268:24515.PubMedGoogle Scholar
  18. LaVail, M. M., Yasumura, D., Matthes, M. T., Drenser, K. A., Flannery, J. G., Lewin, A. S., and Hauswirth, W. W., 2000, Ribozyme rescue of photoreceptor cells in P23H transgenic rats: long-term survival and late-stage therapy, Proc Natl Acad Sci U S A. 97:11488.PubMedCrossRefGoogle Scholar
  19. Lewin, A. S., Drenser, K. A., Hauswirth, W. W., Nishikawa, S., Yasumura, D., Flannery, J. G., and LaVail, M. M., 1998, Ribozyme rescue of photoreceptor cells in a transgenic rat model of autosomal dominant retinitis pigmentosa, Nat Med. 4:967.PubMedCrossRefGoogle Scholar
  20. Liu, J., Timmers, A. M., Lewin, A. S., and Hauswirth, W. W., 2005, Ribozyme knockdown of the gamma-subunit of rod cGMP phosphodiesterase alters the ERG and retinal morphology in wild-type mice, Invest Ophthalmol Vis Sci. 46:3836.PubMedCrossRefGoogle Scholar
  21. McGee Sanftner, L. H., Abel, H., Hauswirth, W. W., and Flannery, J. G., 2001, Glial cell line derived neurotrophic factor delays photoreceptor degeneration in a transgenic rat model of retinitis pigmentosa, Mol Ther. 4:622.PubMedCrossRefGoogle Scholar
  22. Naash, M. I., Hollyfield, J. G., al-Ubaidi, M. R., and Baehr, W., 1993, Simulation of human autosomal dominant retinitis pigmentosa in transgenic mice expressing a mutated murine opsin gene, Proc Natl Acad Sci U S A. 90:5499.PubMedCrossRefGoogle Scholar
  23. Naash, M. L., Peachey, N. S., Li, Z. Y., Gryczan, C. C., Goto, Y., Blanks, J., Milam, A. H., and Ripps, H., 1996a, Light-induced acceleration of photoreceptor degeneration in transgenic mice expressing mutant rhodopsin, Invest Ophthalmology Visual Sci. 37:775.Google Scholar
  24. Naash, M. I., Ripps, H., Li, S., Goto, Y., and Peachey, N. S., 1996b, Polygenic disease and retinitis pigmentosa: albinism exacerbates photoreceptor degeneration induced by the expression of a mutant opsin in transgenic mice, J Neurosci. 16:7853.Google Scholar
  25. Naash, M. I., Wu, T. H., Chakraborty, D., Fliesler, S. J., Ding, X. Q., Nour, M., Peachey, N. S., Lem, J., Qtaishat, N., Al-Ubaidi, M. R., and Ripps, H., 2004, Retinal abnormalities associated with the G90D mutation in opsin, The Journal of comparative neurology.478:149.PubMedCrossRefGoogle Scholar
  26. Noorwez, S. M., Malhotra, R., McDowell, J. H., Smith, K. A., Krebs, M. P., and Kaushal, S., 2004, Retinoids assist the cellular folding of the autosomal dominant retinitis pigmentosa opsin mutant P23H, J Biol Chem. 279:16278.PubMedCrossRefGoogle Scholar
  27. Nour, M., and Naash, M. I., 2003, Mouse models of human retinal disease caused by expression of mutant rhodopsin. A valuable tool for the assessment of novel gene therapies, Adv Exp Med Bio. 533:173.Google Scholar
  28. Penn, J. S., Li, S., and Naash, M. I., 2000, Ambient hypoxia reverses retinal vascular attenuation in a transgenic mouse model of autosomal dominant retinitis pigmentosa, Invest Ophthalmol Vis Sci. 41:4007.PubMedGoogle Scholar
  29. Petrin, D., Baker, A., Coupland, S. G., Liston, P., Narang, M., Damji, K., Leonard, B., Chiodo, V. A., Timmers, A., Hauswirth, W., Korneluk, R. G., and Tsilfidis, C., 2003, Structural and functional protection of photoreceptors from MNU-induced retinal degeneration by the X-linked inhibitor of apoptosis, Invest Ophthalmol Vis Sci. 44:2757.PubMedCrossRefGoogle Scholar
  30. Qtaishat, N. M., Okajima, T. I., Li, S., Naash, M. I., and Pepperberg, D. R., 1999, Retinoid kinetics in eye tissues of VPP transgenic mice and their normal littermates, Invest Ophthalmol Vis Sci. 40:1040.PubMedGoogle Scholar
  31. Shimayama, T., Nishikawa, S., and Taira, K., 1995, Generality of the NUX rule: kinetic analysis of the results of systematic mutations in the trinucleotide at the cleavage site of hammerhead ribozymes, Biochemistry. 34:3649.PubMedCrossRefGoogle Scholar
  32. Sung, C. H., Davenport, C. M., and Nathans, J., 1993, Rhodopsin mutations responsible for autosomal dominant retinitis pigmentosa. Clustering of functional classes along the polypeptide chain, J Biol Chem. 268:26645.PubMedGoogle Scholar
  33. Sung, C. H., Schneider, B. G., Agarwal, N., Papermaster, D. S., and Nathans, J., 1991, Functional heterogeneity of mutant rhodopsins responsible for autosomal dominant retinitis pigmentosa, Proc Natl Acad Sci U S A. 88:8840.PubMedCrossRefGoogle Scholar
  34. Tam, B. M., and Moritz, O. L., 2006, Characterization of rhodopsin P23H-induced retinal degeneration in a Xenopus laevis model of retinitis pigmentosa, Invest Ophthalmol Vis Sci. 47:3234.PubMedCrossRefGoogle Scholar
  35. Tang, X. B., Hobom, G., and Luo, D., 1994, Ribozyme mediated destruction of influenza A virus in vitro and in vivo, J Med Virol. 42:385.PubMedCrossRefGoogle Scholar
  36. Wang, D. Y., Chan, W. M., Tam, P. O., Baum, L., Lam, D. S., Chong, K. K., Fan, B. J., and Pang, C. P., 2005, Gene mutations in retinitis pigmentosa and their clinical implications, Clin Chim Acta. 351:16.CrossRefGoogle Scholar
  37. Wang, M., Lam, T. T., Tso, M. O., and Naash, M. I., 1997, Expression of a mutant opsin gene increases the susceptibility of the retina to light damage, Vis Neurosci. 14:55.PubMedCrossRefGoogle Scholar
  38. Werner, M., and Uhlenbeck, O. C., 1995, The effect of base mismatches in the substrate recognition helices of hammerhead ribozymes on binding and catalysis, Nucleic Acids Res. 23:2092.PubMedCrossRefGoogle Scholar
  39. Wu, T. H., Ting, T. D., Okajima, T. I., Pepperberg, D. R., Ho, Y. K., Ripps, H., and Naash, M. I., 1998, Opsin localization and rhodopsin photochemistry in a transgenic mouse model of retinitis pigmentosa, Neuroscience.87:709.PubMedCrossRefGoogle Scholar
  40. Zamecnik, P. C., and Stephenson, M. L., 1978, Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide, Proc Natl Acad Sci U S A. 75:280.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Dibyendu Chakraborty
    • Patrick Whalen
      • 2
    • Alfred S. Lewin
      • 3
    • Muna I. Naash
      • 1
    1. 1.Department of Cell BiologyUniversity of Oklahoma Health Sciences CenterOklahoma City
    2. 2.Departments of Molecular Genetics and the Center for Vision ScienceUniversity of FloridaGainesvilleUSA
    3. 3.Departments of Molecular Genetics and the Center for Vision Science, Department of Molecular Genetics and MicrobiologyUniversity of Florida, University of Florida College of MedicineGainesvilleUSA

    Personalised recommendations