Advertisement

Reversible and Testable Circuits for Molecular QCA Design

  • X. Ma
  • J. Huang
  • C. Metra
  • F. Lombardi
Part of the Frontiers in Electronic Testing book series (FRET, volume 37)

Emerging technologies have been widely advocated to supersede the projected limitations of CMOS at the end of the roadmap [27]. Computation at nano regimes is substantially different from conventional VLSI. Extremely small feature size, high device density and low power are some of the attributes that emerging technologies must address, while implementing new computational paradigms [1]. One of these paradigm is reversible computing. Reversible computation is accomplished by establishing a one-to-one onto mapping between the input states and output states of the circuit [7]. This bijective property was initially investigated by Landauer who showed that kT ln 2 joules of energy are generated for each bit of information lost due to non reversible computation [6]. But,if computation is performed in a reversible manner, it has been shown that kT In 2 energy dissipation would not necessarily occur. Due to the bijective property, testing of reversible logic is generally simpler than conventional irreversible logic [31].

Keywords

Majority Voter Reversible Logic Fault Pattern CNOT Gate Reversible Gate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Muroga, “Threshold Logic and its Applications”, Wiley Interscience, New York, 1971.Google Scholar
  2. 2.
    T. Toffoli, “Reversible Computing”, Technical Report MIT LCSTM151, MIT Laboratory for Computer Science, 1980.Google Scholar
  3. 3.
    E. Fredkin and T. Toffoli, “Conservative Logic”, International Journal of Theoretical Physics, vol. 21, pp. 219-253, 1982.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    C.H. Bennett, “Logic Reversibilty of Computation”, IBM Journal of Research and Development, vol. 17, pp. 525-532, 1973.MATHGoogle Scholar
  5. 5.
    D. Maslov, G.W. Dueck and D.M. Miller, “Synthesis of Fredkin-Toffoli Reversible Networks”, IEEE Transaction on VLSI, 2004.Google Scholar
  6. 6.
    R. Landauer, “Irreversibility and Heat Generation in the Computing Process”, IBM Journal of Research and Development, vol. 5, pp. 183-191, 1961.MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    M. Nielsen and I. Chuang, “Quantum Computation and Quantum Information”, Cambridge University Press, Cambridge, 2000.Google Scholar
  8. 8.
    W. Wang, R. Zhang, K. Walus and G.A. Jullien, “A Method of Majority Logic Reduction for Quantum Cellular Automata”, IEEE Transaction on Nanotechnology, vol. 3(4), pp. 443-450, 2004.CrossRefGoogle Scholar
  9. 9.
    C.S. Lent, P.D. Tougaw and W. Porod, “Quantum Cellular Automata: The Physics of Computing with Arrays of Quantum Dot Molecules”, Proceedings of the Workshop on Physics and Computing, pp. 5-13, 1994.Google Scholar
  10. 10.
    M.T. Niemier and P.M. Kogge, “Problems in designing with QCAs: lay- out=timing”, International Journal of Circuit Theory and Applications, vol. 29(1), pp. 49-62, 2001.CrossRefGoogle Scholar
  11. 11.
    M.T. Niemier and P.M. Kogge, “Logic-in-Wire: Using Quantum Dots to Imple- ment a Microprocessor”, International Conference on Electronics, Circuits, and Systems (ICECS ’99), vol. 3, pp. 1211-1215, 1999.Google Scholar
  12. 12.
    K. Hennessy and C.S. Lent, “Clocking of Molecular Quantum-Dot Cellular Au- tomata”, Journal of Vaccum Science and Technology, vol. 19(5), pp. 1752-1755, 2001.CrossRefGoogle Scholar
  13. 13.
    I. Amlani, A.O. Orlov, G. Toth, C.S. Lent, G.H. Bernstein and G.L. Snider, “Digital Logic Gate Using Quantum-Dot Cellular Automat”, Science, vol. 284(5412), pp. 289-291, 1999.CrossRefGoogle Scholar
  14. 14.
    S.E. Frost, A.F. Rodrigues, A.W. Janiszewski, R.T. Rausch and P.M. Kogge, “Memory in Motion: A Study of Storage Structures in QCA”, 1st Workshop on Non-Silicon Computation, 2002.Google Scholar
  15. 15.
    M.T. Niemier, A.F. Rodrigues and P.M. Kogge, “A Potentially Implementable FPGA for Quantum Dot Cellular Automata”, 1st Workshop on Non-Silicon Computation (NSC-1), held in conjunction with 8th Int. Symp. on High Performance Computer Architecture (HPCA-8), 2002.Google Scholar
  16. 16.
    P.D. Tougaw and C.S. Lent, “Logical Devices Implemented Using Quantum Cellular Automata”, Journal of Applied Physics, vol. 75(3), pp. 1818-1825, 1994.CrossRefGoogle Scholar
  17. 17.
    V.S. Dimitrov, G.A. Jullien and K. Walus, “Quantum-Dot Cellular Automata Carry-Look-Ahead Adder and Barrel Shifter”, IEEE Emerging Telecommunications Technologies Conference, pp. 2/1-2/4, 2002.Google Scholar
  18. 18.
    C.G. Smith, “Computation Without Current”, Science, vol. 284(2), p. 274, 1999.CrossRefGoogle Scholar
  19. 19.
    K. Walus, R.A. Budiman and G.A. Jullien, “Effects of morphological variations of self-assembled nanostructures on quantum-dot cellular automata (QCA) circuits”, Frontiers of Integration, An International Workshop on Integrating Nanotechnologies, 2002.Google Scholar
  20. 20.
    K. Walus, A. Vetteth, G.A. Jullien and V.S. Dimitrov, “RAM Design Using Quantum-Dot Cellular Automata”, NanoTechnology Conference, vol. 2, pp. 160-163, 2003.Google Scholar
  21. 21.
    M.B. Tahoori, M. Momenzadeh, J. Huang and F. Lombardi, “Testing of Quna- tum Cellular Automata”, IEEE Transaction on Nanotechnology, vol. 3(4), pp. 432-442, 2004.CrossRefGoogle Scholar
  22. 22.
    J. Huang, M. Momenzadeh, M.B. Tahoori and F. Lombardi, “Defect Characterization for Scaling of QCA Devices”, Proceedings of the IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, pp. 30-38, 2004.Google Scholar
  23. 23.
    D.A. Antonelli, D.Z. Chen, T.J. Dysart, X.S. Hu, A.B. Kahng, P.M. Kogge, R.C. Murphy and M.T. Niemier, “Quantum-Dot Cellular Automata (QCA) Circuit Partitioning: Problem Modeling and Solutions”, Design Automation Conference (DAC), pp. 363-368, 2004.Google Scholar
  24. 24.
    K. Walus, G.A. Jullien and V.S. Dimitrov, “Computer arithmetic Structures for Quantum Cellular Automata”, Proceedings of Asimolar Conference, 2003.Google Scholar
  25. 25.
    J. Huang, M. Momenzadeh, M. Ottavi, L. Schiano and F. Lombardi, “A Predeposition Methodology for Tile-Based Design of QCA Combinational Circuits”, Internal report, 2004.Google Scholar
  26. 26.
    M. Momenzadeh, J. Huang, M. Ottavi, N. Park and F. Lombardi, “Computing with Grids of QCA Cells”, Internal report, 2004.Google Scholar
  27. 27.
    R. Compano, L. Molenkamp and D.J. Paul, “Technology Roadmap for Nanoelectroincs”, European Commission IST programme, Future and Emerging Technologies, 2000.Google Scholar
  28. 28.
    Reversible Logic Synthesis Benchmarks Page, available online: http://www.cs. uvic.ca/damslov
  29. 29.
    Personal communication with Professor Marya Lieberman, Department of Chemistry and Biochemistry, University of Notre Dame, IN, USA.Google Scholar
  30. 30.
    V.D. Agrawal, “An Information Theoretic Approach to Digital Fault Testing”, IEEE Transaction on Computers, vol. 30, pp. 582-587, 1981.CrossRefGoogle Scholar
  31. 31.
    K.N. Patel, J.P. Hayes and I.L. Markov, “Fault Testing for Reversible Circuits”, IEEE Transaction on CAD, vol. 23(8), pp. 1220-1230, 2004.Google Scholar
  32. 32.
    J. Timer and C.S. Lent, “Maxwell’s Demon and Quantum-dot Cellular Automata”, Journal of Applied Physics, vol. 94(2), pp. 1050-1060, 2003.CrossRefGoogle Scholar
  33. 33.
    M. Liu, C.S. Lent, “Bennett and Landauer Clocking in Quantum-dot Cellular Automata”, International Workshop on Computational Electronics, Abstracts pp. 120-121, 2004.Google Scholar
  34. 34.
    T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein, “Introduction to Algorithms, 2nd ed.”, McGraw-Hill, New York, 2001.Google Scholar
  35. 35.
    A. Chakraborty, “Synthesis of Reversible Circuits for Testing with Universal Test Set and C-Testability of Reversible Iterative Logic Arrays”, Proceedings of the 18th International Conference on VLSI Design, 2005.Google Scholar
  36. 36.
    QCADesigner Homepage, available online: www.qcadesigner.ca

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • X. Ma
    • 1
  • J. Huang
    • 1
  • C. Metra
    • 2
  • F. Lombardi
    • 3
  1. 1.Department of Electrical and Computer EngineeringNortheastern UniversityBoston
  2. 2.Department of Electrical EngineeringUniversity of BolognaBolognaItaly
  3. 3.Department of Electrical and Computer EngineeringNortheastern UniversityBostonUSA

Personalised recommendations