Built-in Self-Test and Defect Tolerance in Molecular Electronics-Based Nanofabrics

  • Z. Wang
  • K. Chakrabarty
Part of the Frontiers in Electronic Testing book series (FRET, volume 37)

Although complementary metal-oxide semiconductor (CMOS) chips are projected to continue their dominance for another 10—15 years [1], CMOS technology today faces a number of challenges. Quantum effects will soon make it nearly impossible to further scale devices. Deep sub-micron (DSM) technologies suffer from high leakage, and it is projected that stand-by power and active power for CMOS chips will soon become comparable [2]. Moreover, the high cost associated with chip masks and next-generation fabrication plants poses a formidable economic barrier to commercial nanometer-scale lithography.


Defect Density Candidate Block Horizontal Wire Vertical Wire Faulty Block 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Mishra and S. Goldstein, “Defect Tolerance at the End of the Roadmap,” in Proc. International Test Conference, 2003, pp. 1201-1210.Google Scholar
  2. 2.
    E. J. Nowack, “Maintaining the Benefits of CMOS scaling when Scaling Bogs Down,” IBM Journal of Research and Development, no. 2/3, Mar.-May 2002.Google Scholar
  3. 3.
    S. C. Goldstein and M. Budiu, “NanoFabrics: Spatial Computing Using Molecular Electronics,” in Proc. International Symposium on Computer Architecture, 2001, pp. 178-189.Google Scholar
  4. 4.
    S. C. Goldstein and D. Rosewater, “Digital Logic Using Molecular Electronics,” in Proc. IEEE International Solid State Circuits Conference, vol. 1, 2002, pp. 204-459.Google Scholar
  5. 5.
    M. Butts, A. DeHon, and S. C. Goldstein, “Molecular Electronics: Devices, Systems and Tools for Gigagate, Gigabit Chips,” in Proc. International Conference on Computer-Aided Design, 2002, pp. 433-440.Google Scholar
  6. 6.
    M. R. Stan, P. D. Franzon, S. C. Goldstein, J. C. Lach, and M. M. Ziegler, “Molecular Electronics: From Devices and Interconnect to Circuits and Architecture,” Proc. IEEE, vol. 91, Nov. 2003, pp. 1940-1957.CrossRefGoogle Scholar
  7. 7.
    Y. Chen, G.-Y. Jung, D. A. A. Ohlberg, X. Li, D. R. Stewart, J. O. Jeppesen, K. A. Nielsen, J. F. Stoddart, and R. StanleyWilliams, “Nanoscale molecular- switch crossbar circuits,” Nanotechnology, vol. 14, Mar. 2003, pp. 462-468.CrossRefGoogle Scholar
  8. 8.
  9. 9.
    A. J. van de Goor, Testing Semiconductor Memories: Theory and Practice. ComTex Publishing, 1998.Google Scholar
  10. 10.
    C. Stroud, S. Konala, P. Chen, and M. Abramovici, “Built-In Self-Test of Logic Blocks in FPGAs (Finally, A Free Lunch: BIST Without Overhead!),” in Proc. IEEE VLSI Test Symposium, 1996, pp. 387-392.Google Scholar
  11. 11.
    M. Abramovici, E. Lee, and C. Stroud, “BIST-based Diagnostics for FPGA Logic Blocks,” in Proc. International Test Conference, 1997, pp. 539-547.Google Scholar
  12. 12.
    C. Metra, G. Mojoli, S. Pastore, D. Salvi, and G. Sechi, “Novel Technique for Testing FPGAs,” in Proc. Design, Automation and Test in Europe, 1998, pp. 89-94.Google Scholar
  13. 13.
    S. J. Wang and T. M. Tsai, “Test and Diagnosis of Fault Logic Blocks in FP- GAs,” in IEE Proceedings: Computers and Digital Techniques, vol. 146, 1999, pp. 100-106.CrossRefGoogle Scholar
  14. 14.
    M. B. Tahoori, E. J. McCluskey, M. Renovell, and P. Faure, “A multi- configuration strategy for an application dependent testing of FPGAs,” in Proc. IEEE VLSI Test Symposium, 2004, pp. 154-159.Google Scholar
  15. 15.
    M. Tahoori and S. Mitra, “Techniques and algorithms for fault grading of FPGA interconnect test configurations,” IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 23, Feb. 2004, pp. 261-272.CrossRefGoogle Scholar
  16. 16.
    W. B. Culbertson, R. Amerson, R. J. Carter, P. Kuekes, and G. Snider, “Defect Tolerance on the Teramac Custom Computer,” in Proc. IEEE Symposium on Field-Programmable Custom Computing Machines, 1997, pp. 116-223.Google Scholar
  17. 17.
    J. R. Heath, P. J. Kuekes, G. S. Snider, and R. S. Williams, “A Defect-Tolerant Computer Architecture: Opportunities for Nanotechnology,” Science, vol. 280, Jun. 1998, pp. 1716-1721.CrossRefGoogle Scholar
  18. 18.
    S. C. Goldstein and D. Rosewater, “What Makes a Good Molecular-Scale Com- puter Device?” School of Computer Science, Carnegie Mellon University, Tech. Rep. CMU-CS-02-181, Sep. 2002.Google Scholar
  19. 19.
    J. G. Brown and R. D. S. Blanton, “CAEN-BIST: Testing the NanoFabric,” in Proc. International Test Conference, 2004, pp. 462-471.Google Scholar
  20. 20.
    Z. Wang and K. Chakrabarty, “Built-in Self-Test of Molecular Electronics-Based Nanofabrics,” in Proc. European Test Symposium, 2005, pp. 168-173.Google Scholar
  21. 21.
    M. Tehranipoor, “Defect Tolerance for Molecular Electronics-Based NanoFabrics Using Built-In Self-Test Procedure,” in Proc. International Symposium on Defect and Fault Tolerance in VLSI Systems, 2005, pp. 305-313.Google Scholar
  22. 22.
    R. M. Rad and M. Tehranipoor, “SCT: An Approach for Testing and Configuring Nanoscale Devices,” in Proc. IEEE VLSI Test Symposium, 2006 (to appear).Google Scholar
  23. 23.
    S. Sayil, D. V. Kerns, and S. E. Kerns, “A survey contactless measurement and testing techniques,” IEEE Potentials, vol. 24, Feb.-Mar. 2005, pp. 25-28.CrossRefGoogle Scholar
  24. 24.
    M. Vallet and P. Sardin, “Electrical testing for failure analysis: Ebeam testing,” Microelectronic Engineering, vol. 49, 1999, pp. 157-167.CrossRefGoogle Scholar
  25. 25.
    A. Mabrouk and A. Hubbard, “Design and implementation of an optical test- ing technique for VLSI chips using a potential-sensitive fluorescing dye,” in Proc. IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, 1997, pp. 568-572.Google Scholar
  26. 26.
    S. Sayil, “All-Silicon Optical Contactless Testing Of ICs,” International Journal of Electronics, vol. 89, 2002, pp. 537-547.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Z. Wang
  • K. Chakrabarty

There are no affiliations available

Personalised recommendations