Advertisement

Designing Nanoscale Logic Circuits Based on Principles of Markov Random Fields

  • K. Nepal
  • R. I. Bahar
  • J. Mundy
  • W. R. Patterson
  • A. Zaslavsky
Part of the Frontiers in Electronic Testing book series (FRET, volume 37)

As Si CMOS devices are scaled down into the nanoscale regime, current microarchitecture approaches are reaching their practical limits. Thus far, the semiconductor industry has successfully overcome many hurdles, including the current transition to silicon-on-insulator (SOI) technology [1]. Looking to the future, the next major challenges to Si CMOS include new materials (high-κ and low-κ dielectrics [2]), new device geometries (dual-gate or fin-FET devices [3]), and further downscaling of devices and supply voltages with attendant difficulties in manufacturing, power dissipation, and economics of commodity manufacturing [2]. The longer-term prospects of digital computation then diverge into two interrelated areas. On the system side, there are the computer architecture issues arising from the problem of integrating billions of transistors at the lowest possible supply voltage, with tremendous constraints on total power dissipation and device reliability. On the device integration front, there is hope that hybrid systems will emerge, combining CMOS FETbased digital logic with any number of alternative devices, ranging from analog circuits, to more exotic alternatives (optical sources and detectors, quantum or molecular transistors, carbon nanotube devices, etc.) all on the same chip [4].

Keywords

Markov Random Field Noise Immunity Soft Error Feedback Path Markov Random 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. K. Celler and S. Cristoloveanu. Frontiers of silicon-on-insulator. Journal of Applied Physics, 93:4955-4978, 2003.CrossRefGoogle Scholar
  2. 2.
    S. Luryi, J. M. Xu, and A. Zaslavsky, eds. Future Trends in Microelectronics: The Nano, the Giga, and the Ultra. New York: Wiley, 2004.Google Scholar
  3. 3.
    H. S. P. Wong. Beyond the conventional transistor. IBM Journal of Research and Development, 46(2-3):133-168, 2002.CrossRefGoogle Scholar
  4. 4.
    H. Iwai. The future of CMOS downscaling, paper in: S. Luryi, J.M. Xu, and A. Zaslavsky, eds., Future Trends in Microelectronics: The Nano, the Giga, and the Ultra, pages 23-33. Wiley, New York, 2004.Google Scholar
  5. 5.
    International Technology Roadmap for Semiconductors. The latest update is at http://www.public.itrs.net.
  6. 6.
    J. Besag. Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical Society, Series B, 36(3):192-236, 1994.MathSciNetGoogle Scholar
  7. 7.
    S. Z. Li. Markov Random Field Modeling in Computer Vision. Berlin Heidelberg Newyork: Springer, 1995.Google Scholar
  8. 8.
    R. Chellappa. Markov Random Fields: Theory and Applications. New York: Academic, 1993.Google Scholar
  9. 9.
    J. Pearl. Probabilistic reasoning in intelligent systems: networks of plausible inference. San Francisco, CA: Morgan Kaufmann Publishers, 1988.Google Scholar
  10. 10.
    J. Yedidia, W. Freeman, and Y. Weiss. Understanding belief propagation and its generalizations. In International Joint Conference on AI, 2001. Distinguished Lecture.Google Scholar
  11. 11.
    R. I. Bahar, J. Mundy, and J. Chen. A probabilistic-based design methodology for nanoscale computation. In Proceedings of International Conference on Computer Aided Design, November 2003.Google Scholar
  12. 12.
    K. K. Likharev. Single-electron devices and their applications. Proceedings of the IEEE, 87(4):606-632, April 1999.CrossRefGoogle Scholar
  13. 13.
    K. Nepal, R. I. Bahar, J. Mundy, W. R. Patterson, and A. Zaslavsky. Designing logic circuits for probabilistic computation in the presence of noise. In Proceed- ings of Design Automation Conference, June 2005.Google Scholar
  14. 14.
    Berkeley Predictive Technology Model. Available at http://www-device.eecs. berkeley.edu/∼ptm/.
  15. 15.
    V. M. Polyakov and F. Schwierz. Excessive noise in nanoscaled double-gate mosfets: A monte carlo study. Journal of Semiconductor Science and Technology, 19(4):145-147, 2004.CrossRefGoogle Scholar
  16. 16.
    S. Narendra, V. De, S. Borkar, D. A. Antoniadis, and A. P. Chandrakasan. Full-chip subthreshold leakage power prediction and reduction techniques for sub-0.18 µm cmos. IEEE Journal Of Solid-State Circuits, 39:501-510, March 2004.CrossRefGoogle Scholar
  17. 17.
    R. Sarpeshkar, T. Delbrueck, and C. A. Mead. White noise in mos transistors and resistors. IEEE Circuits and Devices Magazine, 6:23-29, November 1993.CrossRefGoogle Scholar
  18. 18.
    H. Li, J. Mundy, W. R. Patterson, D. Kazazis, A. Zaslavsky, and R. I. Bahar. A model for soft errors in the subthreshold cmos inverter. In Proceedings of Workshop on System Effects of Logic Soft Errors, November 2006.Google Scholar
  19. 19.
    E. Suzuki, K. Ishii, S. Kanemaru, T. Maeda, T. Tsutsumi, T. Sekigawa, K. Nagai, and H. Hiroshima. Highly suppressed short-channel effects in ultrathin soi n-mosfets. IEEE Transactions on Electron Devices, 47(2):354-359, February 2000.CrossRefGoogle Scholar
  20. 20.
    T. Ernst, S. Cristoloveanu, G. Ghibaudo, T. Ouisse, S. Horiguchi, Y. Ono, Y. Takahashi, and K. Murase. Ultimately thin double-gate soi mosfets. IEEE Transactions on Electron Devices, 50:830-838, March 2003.CrossRefGoogle Scholar
  21. 21.
    K. Murphy, Y. Weiss, and M. Jordan. Loopy belief propagation for approximate inference: an empirical study. In Proceedings of Uncertainty in AI, 1999.Google Scholar
  22. 22.
    K. Nepal, R. I. Bahar, J. Mundy, W. R. Patterson, and A. Zaslavsky. MRF Reinforcer: A Probabilistic Element for Space Redundancy in Nanoscale Circuits. IEEE Micro, 26(5):9-27, September-October, 2006.CrossRefGoogle Scholar
  23. 23.
    S. Kullback. Information Theory and Statistics. New York: Dover, 1969.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • K. Nepal
    • 1
  • R. I. Bahar
    • 2
  • J. Mundy
    • 2
  • W. R. Patterson
    • 2
  • A. Zaslavsky
    • 2
  1. 1.Department of Electrical EngineeringBucknell UniversityLewisburg
  2. 2.Division of EngineeringBrown UniversityProvidence

Personalised recommendations