Test Planning and Test Resource Optimization for Droplet-Based Microfluidic Systems

  • F. Su
  • S. Ozev
  • K. Chakrabarty
Part of the Frontiers in Electronic Testing book series (FRET, volume 37)

Next-generation system-on-chip designs are expected to be composite microsystems with microelectromechanical and microfluidic components [15,23]. These mixed-signal and mixed-technology systems monolithically integrate microelectronics with microsensors and microactuators, thereby leading to chips that cannot only compute and communicate, but also sense and actuate. This high level of integration is enabling a new class of microsystems targeted at health care, environmental monitoring, biomedical analysis, harmful agent detection for countering bio-terrorism, and precision fluid dispensing [13].


Heuristic Algorithm Hamiltonian Cycle Test Planning Grid Graph Integer Linear Programming Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Balch and R. Arkin, “Avoiding the past: a simple, but effective strategy for reactive navigation”, Proc. Int. Conf. Rob. Autom., pp. 678-685, 1993Google Scholar
  2. 2.
    M. Berkelaar. lpsolve. Eindhoven Univ. Technol., Eindhoven, The Netherlands. [Online]. Available: solve
  3. 3.
    K. F. Böhringer, “Optimal strategies for moving droplets in digital microfluidic systems”, Int. Conf. Miniaturized Chem. Biochem. Anal. Syst. (MicroTAS’03), pp. 591-594, 2003Google Scholar
  4. 4.
    N. Deb and R. D. Blanton, “Analysis of failure sources in surface-micromachined MEMS”, Proc. IEEE Int. Test Conf., pp. 739-749, 2000Google Scholar
  5. 5.
    J. Gross and J. Yellen, Graph Theory and its Applications, Boca Raton, FL: CRC Press, 1999MATHGoogle Scholar
  6. 6.
    C. Icking, T. Kamphans, R. Klein and E. Langetepe, “Exploring an Unknown Cellular Environment”, Proc. Eur. Workshop Comput. Geometry, pp. 140-143, 2000Google Scholar
  7. 7.
    A. Itai, C. H. Papadimitriou and J. L. Szwarcfiter, “Hamilton paths in grid graphs”, SIAM J. Computing, vol. 11, pp. 676-686, 1982MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    H. G. Kerkhoff, “Testing philosophy behind the micro analysis system”, Proc. SPIE: Design, Test Microfabrication MEMS MOEMS, vol. 3680, pp. 78-83, 1999Google Scholar
  9. 9.
    H. G. Kerkhoff and M. Acar, “Testable design and testing of micro-electro-fluidic arrays”, Proc. IEEE VLSI Test Symp., pp. 403-409, 2003Google Scholar
  10. 10.
    H. G. Kerkhoff and H. P. A. Hendriks, “Fault modeling and fault simulation in mixed micro-fluidic microelectronic systems”, J. Electron. Testing: Theory Appl. (JETTA), vol. 17, pp. 427-437, 2001CrossRefGoogle Scholar
  11. 11.
    A. Kolpekwar and R. D. Blanton, “Development of a MEMS testing methodology”, Proc. IEEE Int. Test Conf., pp. 923-931, 1997Google Scholar
  12. 12.
    R. E. Korf, “Real-time heuristic search”, Artif. Intell., vol. 42, pp. 189-211, 1990MATHCrossRefGoogle Scholar
  13. 13.
    W. Menz and A. Guber, “Microstructure technologies and their potential in medical applications”, Minimally Invasive Neurosurgery, vol. 37, pp. 21-27, 1994CrossRefGoogle Scholar
  14. 14.
    S. Mir, B. Charlot and B. Courtois. “Extending fault-based testing to microelectromechanical systems”, J. Electron. Test. Theory Appl. (JETTA), vol. 16, pp. 279-288, 2000CrossRefGoogle Scholar
  15. 15.
    S. Mir, H. Kerkhoff, R. D. Blanton, H. Bederr and H. Klim, “SoCs with MEMS? Can we include MEMS in the SoCs design and test flow?”, Proc. IEEE VLSI Test Symp., pp. 449, 2002Google Scholar
  16. 16.
    S. D. Nigam and J. U. Turner, “Review of statistical approaches to tolerance analysis”, Computer-Aided Des., vol. 27, pp. 6-25, 1995MATHCrossRefGoogle Scholar
  17. 17.
    C. H. Papadimitriou, Computational Complexity, Reading, MA: Addison Wesley, 1993Google Scholar
  18. 18.
    M. G. Pollack, R. B. Fair and A. D. Shenderov, “Electrowetting-based actuation of liquid droplets for microfluidic applications”, Appl. Phys. Lett., vol. 77, pp. 1725-1726, 2000CrossRefGoogle Scholar
  19. 19.
    F. Su, W. Hwang, A. Mukherjee and K. Chakrabarty, “Defect-oriented testing and diagnosis of digital microfluidics-based biochip”, Proc. IEEE Int. Test Conf, 2005Google Scholar
  20. 20.
    F. Su and K. Chakrabarty, “Design of fault-tolerant and dynamically- reconfigurable microfluidic biochips”, Proc. Des. Automation Test Eur. (DATE) Conf.,, pp. 1202-1207, 2005Google Scholar
  21. 21.
    F. Su and K. Chakrabarty, “Architectural-level synthesis of digital microfluidicsbased biochips”, Proc. IEEE Int. Conf., CAD, pp. 223-228, 2004Google Scholar
  22. 22.
    F. Su, S. Ozev and K. Chakrabarty, “Testing of droplet-based microelectrofluidic systems”, Proc. IEEE Int. Test Conf., pp. 1192-1200, 2003Google Scholar
  23. 23.
    S. Thrun, Efficient exploration in reinforcement learning. Technical Report CMU-CS-92-102, Carnegie Mellon University, 1992Google Scholar
  24. 24.
    I. Wagner, M. Lindenbaum and A. Bruckstein, “On-line graph searching by a smell-oriented vertex process”, Proc. AAAI Workshop on On-Line Search, pp. 122-125, 1997Google Scholar
  25. 25.
    H. P. Williams, Model Building in Mathematical Programming, New York: Wiley, 1999Google Scholar
  26. 26.
    T. Zhang, K. Chakrabarty and R. B. Fair, Microelectrofluidic Systems: Modeling and Simulation, Boca Raton, FL: CRC Press, 2002Google Scholar
  27. 27.
    International Technology Roadmap for Semiconductor (ITRS), http://public.

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • F. Su
  • S. Ozev
  • K. Chakrabarty

There are no affiliations available

Personalised recommendations