Relative Antigenicity of Allograft Components and Differential Rejection

  • Jignesh Unadkat
  • Justin M. Sacks
  • Stefan Schneeberger
  • W. P. Andrew Lee

A composite tissue comprises tissues derived from all three germ layers: ectoderm, mesoderm, and endoderm. Following transplantation, each component induces an immune response, which differs in character and intensity.

Skin has been shown to be the most antigenic tissue and is the first tissue to be rejected in animal models and human transplants. The heightened antigenicity of skin has been attributed to Langerhans' dendritic cells and skin-specific antigens. Muscle, bone, cartilage, and nerve predictably induce a relatively lower immune response in that order. However, rejection of even one component of a composite tissue renders the entire allograft vulnerable to dysfunction.

The knowledge of relative antigenicity can lead to the development of strategies intended to decrease the antigenicity of a specific component. In addition, a better understanding of this relative antigenicity of allograft components enables the concept of tailored immunosuppression targeting only specific cellular and humoral components of rejection. This would limit the amount of immunosuppression used and the consequent related complications of opportunistic infections and malignancies.


Allograft Rejection Bone Allograft Relative Antigenicity Osteochondral Allograft Tendon Allograft 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Starzl TE. Back to the future. Transplantation. 2005;79(9):1009–1014.PubMedCrossRefGoogle Scholar
  2. 2.
    Billingham RE, Medawar PB. Desensitization to skin homografts by injections of donor skin extracts. Ann Surg. 1953;137(4):444–449.PubMedCrossRefGoogle Scholar
  3. 3.
    Kirk AD. Immunosuppression without immunosuppression? How to be a tolerant individual in a dangerous world. Transpl Infect Dis. 1999;1(1):65–75.PubMedCrossRefGoogle Scholar
  4. Siemionow M, Ozer K. Advances in composite tissue allograft transplantation as related to the hand and upper extremity. J Hand Surg [Am]. 2002;27(4):565–580.CrossRefGoogle Scholar
  5. 5.
    Barker JH, Francois CG, Frank JM, Maldonado C. Composite tissue allotransplantation. Transplantation. 2002;73(5):832–835.PubMedCrossRefGoogle Scholar
  6. 6.
    Dubernard JM, Owen E, Herzberg G, et al. Human hand allograft: report on first 6 months. Lancet. 1999;353(9161):1315–1320.PubMedCrossRefGoogle Scholar
  7. 7.
    Lee WP, Mathes DW. Hand transplantation: pertinent data and future outlook. J Hand Surg [Am]. 1999;24(5):906–913.CrossRefGoogle Scholar
  8. 8.
    Lee WP, Yaremchuk MJ, Pan YC, Randolph MA, Tan CM, Weiland AJ. Relative antigenicity of components of a vascularized limb allograft. Plast Reconstr Surg. 1991;87(3):401–411.PubMedCrossRefGoogle Scholar
  9. 9.
    Prabhune KA, Gorantla VS, Maldonado C, Perez-Abadia G, Barker JH, Ildstad ST. Mixed allogeneic chimerism and tolerance to composite tissue allografts. Microsurgery. 2000;20(8):441–447.PubMedCrossRefGoogle Scholar
  10. 10.
    Buttemeyer R, Jones NF, Min Z, Rao U. Rejection of the component tissues of limb allografts in rats immunosuppressed with FK-506 and cyclosporine. Plast Reconstr Surg. 1996;97(1):139–148; discussion 149–151.PubMedCrossRefGoogle Scholar
  11. 11.
    Murray JE. Organ transplantation (skin, kidney, heart) and the plastic surgeon. Plast Reconstr Surg. 1971;47(5):425–431.PubMedCrossRefGoogle Scholar
  12. 12.
    Moseley RV, Sheil AG, Mitchell RM, Murray JE. Immunologic relationships between skin and kidney homografts in dogs on immunosuppressive therapy. Transplantation. 1966;4(6):678–687.PubMedCrossRefGoogle Scholar
  13. 13.
    Tanaka S, Sakai A. Stimulation of allogeneic lymphocytes by skin epidermal cells in the rat. Transplantation. 1979;27(3):194–199.PubMedCrossRefGoogle Scholar
  14. 14.
    Tan CM, Yaremchuk MJ, Randolph MA, Lee WP, Burdick J, Weiland AJ. Vascularized muscle allografts and the role of cyclosporine. Plast Reconstr Surg. 1991;87(3):412–418.PubMedCrossRefGoogle Scholar
  15. 15.
    Paskert JP, Yaremchuk MJ, Randolph MA, Weiland AJ. The role of cyclosporin in prolonging survival in vascularized bone allografts. Plast Reconstr Surg. 1987;80(2):240–247.PubMedCrossRefGoogle Scholar
  16. 16.
    Wengerter K, Dardik H. Biological vascular grafts. Semin Vasc Surg. 1999;12(1):46–51.PubMedGoogle Scholar
  17. 17.
    Bain JR, Mackinnon SE, Hudson AR, Falk RE, Falk JA, Hunter DA. The peripheral nerve allograft: an assessment of regeneration across nerve allografts in rats immunosuppressed with cyclosporin A. Plast Reconstr Surg. 1988;82(6):1052–1066.PubMedGoogle Scholar
  18. 18.
    Mackinnon SE, Doolabh VB, Novak CB, Trulock EP. Clinical outcome following nerve allograft transplantation. Plast Reconstr Surg. 2001;107(6):1419–1429.PubMedCrossRefGoogle Scholar
  19. 19.
    Zhang Z, Zhu L, Quan D, et al. Pattern of liver, kidney, heart, and intestine allograft rejection in different mouse strain combinations. Transplantation. 1996;62(9):1267–1272.PubMedCrossRefGoogle Scholar
  20. 20.
    Tung TH, Mohanakumar T, Mackinnon SE. TH1/TH2 cytokine profile of the immune response in limb component transplantation. Plast Reconstr Surg. 2005;116(2):557–566.PubMedCrossRefGoogle Scholar
  21. 21.
    Boyse EA, Old LJ. Loss of skin allograft tolerance by chimeras. Transplantation. 1968;6(4):619.PubMedCrossRefGoogle Scholar
  22. 22.
    Kanitakis J, Jullien D, Petruzzo P, et al. Clinicopathologic features of graft rejection of the first human hand allograft. Transplantation. 2003;76(4):688–693.PubMedCrossRefGoogle Scholar
  23. 23.
    Cendales LC, Kirk AD, Moresi JM, Ruiz P, Kleiner DE. Composite tissue allotransplantation: classification of clinical acute skin rejection. Transplantation. 2006;81(3):418–422.PubMedCrossRefGoogle Scholar
  24. 24.
    Steinman RM. The dendritic cell system and its role in immunogenicity. Annu Rev Immunol. 1991;9:271–296.PubMedCrossRefGoogle Scholar
  25. 25.
    Steinmuller D, Wakely E, Landas SK. Evidence that epidermal alloantigen Epa-1 is an immunogen for murine heart as well as skin allograft rejection. Transplantation. 1991;51(2): 459–463.PubMedCrossRefGoogle Scholar
  26. 26.
    Fuchimoto Y, Gleit ZL, Huang CA, et al. Skin-specific alloantigens in miniature swine. Transplantation. 2001;72(1):122–126.PubMedCrossRefGoogle Scholar
  27. 27.
    Volc-Platzer B, Majdic O, Knapp W, et al. Evidence of HLA-DR antigen biosynthesis by human keratinocytes in disease. J Exp Med. 1984;159(6):1784–1789.PubMedCrossRefGoogle Scholar
  28. 28.
    Dustin ML, Singer KH, Tuck DT, Springer TA. Adhesion of T lymphoblasts to epidermal keratinocytes is regulated by interferon gamma and is mediated by intercellular adhesion molecule 1 (ICAM-1). J Exp Med. 1988;167(4):1323–1340.PubMedCrossRefGoogle Scholar
  29. 29.
    Simon M, Jr., Hunyadi J. Expression of OKM5 antigen on human keratinocytes in positive intracutaneous tests for delayed-type hypersensitivity. Dermatologica. 1987;175(3):121–125.PubMedCrossRefGoogle Scholar
  30. 30.
    Luger TA, Stadler BM, Katz SI, Oppenheim JJ. Epidermal cell (keratinocyte)-derived thymocyte- activating factor (ETAF). J Immunol. 1981;127(4):1493–1498.PubMedGoogle Scholar
  31. 31.
    Aragane Y, Riemann H, Bhardwaj RS, et al. IL-12 is expressed and released by human keratinocytes and epidermoid carcinoma cell lines. J Immunol. 1994;153(12):5366–5372.PubMedGoogle Scholar
  32. 32.
    Partridge M, Chantry D, Turner M, Feldmann M. Production of interleukin-1 and interleukin-6 by human keratinocytes and squamous cell carcinoma cell lines. J Invest Dermatol. 1991;96(5): 771–776.PubMedCrossRefGoogle Scholar
  33. 33.
    Barker JN, Jones ML, Mitra RS, et al. Modulation of keratinocyte-derived interleukin-8 which is chemotactic for neutrophils and T lymphocytes. Am J Pathol. 1991;139(4):869–876.PubMedGoogle Scholar
  34. 34.
    Richters CD, van Pelt AM, van Geldrop E, et al. Migration of rat skin dendritic cells. J Leukoc Biol. 1996;60(3):317–322.PubMedGoogle Scholar
  35. 35.
    Nishibu A, Ward BR, Jester JV, Ploegh HL, Boes M, Takashima A. Behavioral responses of epidermal Langerhans cells in situ to local pathological stimuli. J Invest Dermatol. 2006; 126(4):787–796.PubMedCrossRefGoogle Scholar
  36. 36.
    Bergstresser PR, Fletcher CR, Streilein JW. Surface densities of Langerhans cells in relation to rodent epidermal sites with special immunologic properties. J Invest Dermatol. 1980;74(2): 77–80.PubMedCrossRefGoogle Scholar
  37. 37.
    Chen HD, Silvers WK. Influence of Langerhans cells on the survival of H-Y incompatible skin grafts in rats. J Invest Dermatol. 1983;81(1):20–23.PubMedCrossRefGoogle Scholar
  38. 38.
    Kissenpfennig A, Henri S, Dubois B, et al. Dynamics and function of Langerhans cells in vivo: dermal dendritic cells colonize lymph node areas distinct from slower migrating Langerhans cells. Immunity. 2005;22(5):643–654.PubMedCrossRefGoogle Scholar
  39. 39.
    Steinmuller D. Passenger leukocytes and the immunogenicity of skin allografts: a critical reevaluation. Transplant Proc. 1981;13(1 Pt 2):1094–1098.PubMedGoogle Scholar
  40. 40.
    Barker CF, Billingham RE. The role of afferent lymphatics in the rejection of skin homografts. J Exp Med. 1968;128(1):197–221.PubMedCrossRefGoogle Scholar
  41. 41.
    Tyler JD, Steinmuller D. Evidence of cell-mediated cytotoxicity to skin-specific alloantigens on mouse epidermal cells. Transplant Proc. 1981;13(1 Pt 2):1082–1085.PubMedGoogle Scholar
  42. 42.
    Schneeberger S, Kreczy A, Brandacher G, Steurer W, Margreiter R. Steroid- and ATG-resistant rejection after double forearm transplantation responds to Campath-1H. Am J Transplant. 2004;4(8):1372–1374.PubMedCrossRefGoogle Scholar
  43. 43.
    Karpati G, Pouliot Y, Carpenter S. Expression of immunoreactive major histocompatibility complex products in human skeletal muscles. Ann Neurol. 1988;23(1):64–72.PubMedCrossRefGoogle Scholar
  44. 44.
    Hettiaratchy S, Melendy E, Randolph MA, et al. Tolerance to composite tissue allografts across a major histocompatibility barrier in miniature swine. Transplantation. 2004;77(4):514–521.PubMedCrossRefGoogle Scholar
  45. 45.
    Arnoczky SP, Warren RF, Ashlock MA. Replacement of the anterior cruciate ligament using a patellar tendon allograft. An experimental study. J Bone Joint Surg Am. 1986;68(3):376–385.PubMedGoogle Scholar
  46. 46.
    Shino K, Kawasaki T, Hirose H, Gotoh I, Inoue M, Ono K. Replacement of the anterior cruciate ligament by an allogeneic tendon graft. An experimental study in the dog. J Bone Joint Surg Br. 1984;66(5):672–681.PubMedGoogle Scholar
  47. 47.
    Deng W, Zhao H, Dong H. [Clinical application of allogeneic tendon]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2005;19(8):666–668.PubMedGoogle Scholar
  48. 48.
    Zhang Y, Yang K, Zhu W. [Experimental research and clinical application of allogenic tendon grafting]. Zhonghua Wai Ke Za Zhi. 1995;33(9):539–541.PubMedGoogle Scholar
  49. 49.
    Chang Q, Huang X, Guan C. [Treatment of chronic Achilles tendon rupture by use of allogeneic tendon]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2004;18(4):336–337.PubMedGoogle Scholar
  50. 50.
    Guimberteau JC, Baudet J, Panconi B, Boileau R, Potaux L. Human allotransplant of a digital flexion system vascularized on the ulnar pedicle: a preliminary report and 1-year follow-up of two cases. Plast Reconstr Surg. 1992;89(6):1135–1147.PubMedCrossRefGoogle Scholar
  51. 51.
    Colnot C. Cellular and molecular interactions regulating skeletogenesis. J Cell Biochem. 2005;95(4):688–697.PubMedCrossRefGoogle Scholar
  52. 52.
    Shaari CM, Farber D, Brandwein MS, Gannon P, Urken ML. Characterizing the antigenic profile of the human trachea: implications for tracheal transplantation. Head Neck. 1998;20(6):522–527.PubMedCrossRefGoogle Scholar
  53. 53.
    Burmester GR, Menche D, Merryman P, Klein M, Winchester R. Application of monoclonal antibodies to the characterization of cells eluted from human articular cartilage. Expression of Ia antigens in certain diseases and identification of an 85-kD cell surface molecule accumulated in the pericellular matrix. Arthritis Rheum. 1983;26(10):1187–1195.PubMedCrossRefGoogle Scholar
  54. 54.
    Donald PJ. Cartilage grafting in facial reconstruction with special consideration of irradiated grafts. Laryngoscope. 1986;96(7):786–807.PubMedCrossRefGoogle Scholar
  55. 55.
    Langer F, Gross AE. Immunogenicity of allograft articular cartilage. J Bone Joint Surg Am. 1974;56(2):297–304.PubMedGoogle Scholar
  56. 56.
    Whitsett CF, Stulting RD. The distribution of HLA antigens on human corneal tissue. Invest Ophthalmol Vis Sci. 1984;25(5):519–524.PubMedGoogle Scholar
  57. 57.
    Wang EC, Damrose EJ, Mendelsohn AH, et al. Distribution of class I and II human leukocyte antigens in the larynx. Otolaryngol Head Neck Surg. 2006;134(2):280–287.PubMedCrossRefGoogle Scholar
  58. 58.
    Yang J, Hu J, Wu Z. [Experimental study on the tracheal allografts with decreased antigenicity]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2006;20(1):73–76.PubMedGoogle Scholar
  59. 59.
    Burchardt H. The biology of bone graft repair. Clin Orthop Relat Res. 1983(174):28–42.PubMedGoogle Scholar
  60. 60.
    Stevenson S, Li XQ, Martin B. The fate of cancellous and cortical bone after transplantation of fresh and frozen tissue-antigen-matched and mismatched osteochondral allografts in dogs. J Bone Joint Surg Am. 1991;73(8):1143–1156.PubMedGoogle Scholar
  61. 61.
    Friedlaender GE. Immune responses to osteochondral allografts. Current knowledge and future directions. Clin Orthop Relat Res. 1983(174):58–68.Google Scholar
  62. 62.
    Friedlaender GE, Strong DM, Sell KW. Studies on the antigenicity of bone. I. Freeze-dried and deep-frozen bone allografts in rabbits. J Bone Joint Surg Am. 1976;58(6):854–858.PubMedGoogle Scholar
  63. 63.
    Stevenson S. The immune response to osteochondral allografts in dogs. J Bone Joint Surg Am. 1987;69(4):573–582.PubMedGoogle Scholar
  64. 64.
    Goldberg VM, Powell A, Shaffer JW, Zika J, Bos GD, Heiple KG. Bone grafting: role of histocompatibility in transplantation. J Orthop Res. 1985;3(4):389–404.PubMedCrossRefGoogle Scholar
  65. 65.
    Lee WP, Pan YC, Kesmarky S, et al. Experimental orthotopic transplantation of vascularized skeletal allografts: functional assessment and long-term survival. Plast Reconstr Surg. 1995;95(2):336–349; discussion 350–333.PubMedCrossRefGoogle Scholar
  66. 66.
    Atchabahian A, Mackinnon SE, Hunter DA. Cold preservation of nerve grafts decreases expression of ICAM-1 and class II MHC antigens. J Reconstr Microsurg. 1999;15(4): 307–311.PubMedCrossRefGoogle Scholar
  67. 67.
    Ansselin AD, Pollard JD. Immunopathological factors in peripheral nerve allograft rejection: quantification of lymphocyte invasion and major histocompatibility complex expression. J Neurol Sci. 1990;96(1):75–88.PubMedCrossRefGoogle Scholar
  68. 68.
    Evans PJ, Mackinnon SE, Levi AD, et al. Cold preserved nerve allografts: changes in basement membrane, viability, immunogenicity, and regeneration. Muscle Nerve. 1998;21(11): 1507–1522.PubMedCrossRefGoogle Scholar
  69. 69.
    Linsley PS, Greene JL, Brady W, Bajorath J, Ledbetter JA, Peach R. Human B7–1 (CD80) and B7–2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity. 1994;1(9):793–801.PubMedCrossRefGoogle Scholar
  70. 70.
    Hollenbaugh D, Mischel-Petty N, Edwards CP, et al. Expression of functional CD40 by vascular endothelial cells. J Exp Med. 1995;182(1):33–40.PubMedCrossRefGoogle Scholar
  71. 71.
    Biedermann BC, Pober JS. Human endothelial cells induce and regulate cytolytic T cell differentiation. J Immunol. 1998;161(9):4679–4687.PubMedGoogle Scholar
  72. 72.
    Briscoe DM, Alexander SI, Lichtman AH. Interactions between T lymphocytes and endothelial cells in allograft rejection. Curr Opin Immunol. 1998;10(5):525–531.PubMedCrossRefGoogle Scholar
  73. 73.
    Plissonnier D, Nochy D, Poncet P, et al. Sequential immunological targeting of chronic experimental arterial allograft. Transplantation. 1995;60(5):414–424.PubMedCrossRefGoogle Scholar
  74. 74.
    Lagaaij EL, Cramer-Knijnenburg GF, van Kemenade FJ, van Es LA, Bruijn JA, van Krieken JH. Endothelial cell chimerism after renal transplantation and vascular rejection. Lancet. 2001;357(9249):33–37.PubMedCrossRefGoogle Scholar
  75. 75.
    Quaini F, Urbanek K, Beltrami AP, et al. Chimerism of the transplanted heart. N Engl J Med. 2002;346(1):5–15.PubMedCrossRefGoogle Scholar
  76. 76.
    Cailhier JF, Laplante P, Hebert MJ. Endothelial apoptosis and chronic transplant vasculopathy: recent results, novel mechanisms. Am J Transplant. 2006;6(2):247–253.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Jignesh Unadkat
    • 1
  • Justin M. Sacks
    • 1
  • Stefan Schneeberger
    • 2
  • W. P. Andrew Lee
    1. 1.Division of Plastic Surgery, Department of SurgeryUniversity of Pittsburgh School of MedicinePittsburgh
    2. 2.Division of Plastic SurgeryUniversity of PittsburghPittsburgh

    Personalised recommendations