Peripheral Nerve Allotransplantation

  • Chau Y. Tai
  • Susan E. Mackinnon

Philipeaux and Vulpian were credited with the first description of peripheral nerve allograft (PNA) in dogs in 1863. While all the allografts failed, their continued work on nerve autografts yielded important observations still true today — they noted that the sensory lingual nerve was able to function as an autograft in the hypoglossal motor nerve, and tested this function using in vivo electrical stimulation.1 In 1885, Albert reported first two clinical cases of nerve reconstructions, a 3-cm median and 10-cm ulnar nerve gaps, using segments from amputated lower extremities. The follow-up was only 10 days, and Huber subsequently reported graft necrosis of the second case within a week of transplantation. Mayo- Robson reported one early case of successful nerve allograft in 1889 in a 12-year-old girl, who received a 2.5-in. posterial tibial nerve graft from an amputated leg of another patient to the median nerve of her hand. However, subsequent attempts at nerve allotransplantation were met with failures.


Peripheral Nerve Schwann Cell Nerve Regeneration Axonal Regeneration Peripheral Nerve Regeneration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. S. Dellon, A. L. Dellon, The first nerve graft, Vulpian, and the nineteenth century neural regeneration controversy, J Hand Surg (Am) 18, 369 (1993).CrossRefGoogle Scholar
  2. 2.
    E. Albert, Einige Operationen an Nerven, Wien Med Presse 26, 1285 (1885).Google Scholar
  3. 3.
    G. C. Huber, A study of the operative treatment for loss of nerve substance in peripheral nerves, J Morphol 11, 629 (1895).CrossRefGoogle Scholar
  4. 4.
    A. W. Mayo-Robson, Nerve grafting as a means of restoring function in limbs paralyzed by gunshot or other injuries, BMJ 1, 117 (1917).CrossRefGoogle Scholar
  5. 5.
    H. J. Seddon, W. Holmes, The late condition of nerve homografts in man, Surg Gynecol Obstet 79, 342 (1944).Google Scholar
  6. 6.
    R. G. Spurling, W. R. Lyons, B. B. Whitcomb, B. Woodhall, The failure of whole fresh homografts in man, J Neurosurg 2, 79 (1945).CrossRefGoogle Scholar
  7. 7.
    S. E. Mackinnon, Surgical management of the peripheral nerve gap, Clin Plast Surg 16, 587 (1989).PubMedGoogle Scholar
  8. 8.
    S. E. Mackinnon, Nerve allotransplantation following sever tibial nerve injury: case report, J Neurosurg 84, 671 (1996).PubMedCrossRefGoogle Scholar
  9. 9.
    S. Y. Fu, T. Gordon, The cellular and molecular basis of peripheral nerve regeneration, Mol Neurobiol 14, 67 (1997).PubMedCrossRefGoogle Scholar
  10. 10.
    P. Hu, E. M. McLachlan, Selective reactions of cutaneous and muscle afferent neurons to peripheral nerve transaction in rats, J Neurosci 23, 10559 (2003).PubMedGoogle Scholar
  11. 11.
    J. Ygge, Neuronal loss in lumbar dorsal root ganglia after proximal compared to distal sciatic nerve resection: a quantitative study in the rat, Exp Brain Res 478, 193 (1989).Google Scholar
  12. 12.
    H. S. Xiao, Q. H. Hunag, F. X. Zhang, et al., Identification of gene expression profile of dorsal root ganglion in the rat peripheral axotomy model of neuropathic pain, Proc Natl Acad Sci U S A 99, 8360 (2002).PubMedCrossRefGoogle Scholar
  13. 13.
    C. S. Eddleman, G. D. Bittner, H. M. Fishman, Barrier permeability at cut axonal ends progressively decreases until an ionic seal is formed, Biophys J 79, 1883 (2000).PubMedCrossRefGoogle Scholar
  14. 14.
    M. C. Raff, A. V. Whitmore, J. T. Finn, Axonal self-destruction and neurodegeneration, Science 296, 868 (2002).PubMedCrossRefGoogle Scholar
  15. 15.
    G. Y. Wang, K. Hirai, H. Shimada, S. Taji, S. Z. Zhong, Behavior of axons, Schwann cells and perineurial cells in nerve regeneration within transplanted nerve grafts: effects of anti-laminin and anti-fibronectin antisera, Exp Brain Res 583, 216 (1992).Google Scholar
  16. 16.
    C. Witzel, C. Rohde, T. M. Brushart, Pathway sampling be regenerating peripheral axons, J Comp Neurol 485, 183 (2005).PubMedCrossRefGoogle Scholar
  17. 17.
    M. J. Politis, K. Ederle, P. S. Spencer, Tropism in nerve regeneration in vivo. Attraction of regenerating axons by diffusible factors derived from cells in distal nerve stumps of transected peripheral nerves, Exp Brain Res 253, 1 (1982).Google Scholar
  18. 18.
    T. M. Brushart, J. Gerber, P. Kessens, Y. G. Chen, R. M. Royall, Contributions of pathway and neuron to preferential motor reinnervation, J Neurosci 18, 8674 (1998).PubMedGoogle Scholar
  19. 19.
    C. M. Nichols, M. J. Brenner, I. K. Fox, et al., Effect of motor versus sensory nerve grafts on peripheral nerve regeneration, Exp Neurol 190, 347–355 (2004).PubMedCrossRefGoogle Scholar
  20. 20.
    A. Waller, Experiments on the section of the glossopharyngeal and hypoglossal nerves of the frog, and observations on the alterations produced thereby in the structure of their primitive fibers, Phil Trans R Soc Lond 140, 423 (1850).CrossRefGoogle Scholar
  21. 21.
    K. R. Jessen, R. Mirsky, Why do Schwann cells survive in the absence of axons? Ann N Y Acad Sci 883, 109 (1999).PubMedCrossRefGoogle Scholar
  22. 22.
    W. Beuche, R. L. Friede, The role of non-resident cells in Wallerian degeneration, J Neurocytol 13, 767 (1984).PubMedCrossRefGoogle Scholar
  23. 23.
    A. J. Aguayo, J. Epps, L. Charron, G. M. Bray, Multipotentiality of Schwann cells in cross-anastomosed and grafted myelinated and unmyelinated nerves: quantitative microscopy and radioautography, Exp Brain Res 104, 1 (1976).Google Scholar
  24. 24.
    R. Midha, V. Ramakrishna, C. A. Munro, T. Matsuyama, R. M. Gorczynski, Detection of host and donor cells in sex-mismatched rat nerve allograft using RT-PCR for a Y chromosome (H-Y) marker, J Peripher Nerv Syst 5, 140 (2000).PubMedCrossRefGoogle Scholar
  25. 25.
    A. Kimura, T. Ajiki, K. Takeuchi, et al., Transmigration of donor cells involved in the sciatic nerve graft, Transplant Proc 37, 205 (2005).PubMedCrossRefGoogle Scholar
  26. 26.
    A. K. Gulati, Evaluation of acellular and cellular nerve grafts in repair of rat peripheral nerve, J Neurosurg 68, 117 (1988).PubMedCrossRefGoogle Scholar
  27. 27.
    C. Taveggia, G. Zanazzi, A. Petrylak, et al., Neuregulin-1 Type III determines the ensheathment fate of axons, Neuron 47, 681 (2005).PubMedCrossRefGoogle Scholar
  28. 28.
    B. Strauch, D. M. Rodriguez, J. Diaz, H. L. Yu, G. Kaplan, D. E. Weinstein, Autologous Schwann cells drive regeneration through a 6-cm autogenous venous nerve conduit, J Reconstr Microsurg 17, 589 (2001).PubMedCrossRefGoogle Scholar
  29. 29.
    H. J. Weinberg, P. S. Spencer, The fate of Schwann cells isolated from axonal contact, J Neurocytol 7, 555 (1978).PubMedCrossRefGoogle Scholar
  30. 30.
    T. J. Best, S. E. Mackinnon, R. Midha, D. A. Hunter, P. J. Evans, Revascularization of peripheral nerve autografts and allografts, Plast Reconstr Surg 104, 152 (1999).PubMedCrossRefGoogle Scholar
  31. 31.
    T. J. Best, S. E. Mackinnon, P. J. Eves, D. Hunter, R. Midha, Peripheral nerve revascularization: histomorphometric study of small-and large caliber grafts, J Reconstr Microsurg 15, 183 (1999).PubMedCrossRefGoogle Scholar
  32. 32.
    G. Penkert, W. Bini, M. Samii, Revascularization of nerve grafts: an experimental study, J Reconstr Microsurg 4, 319 (1988).PubMedCrossRefGoogle Scholar
  33. 33.
    B. Prpa, P. M. Huddleston, K. N. An, M. B. Wood, Revascularization of nerve grafts: a qualitative and quantitative study of the soft-tissue bed contributions to blood flow in canine nerve grafts, J Hand Surg (Am) 27, 1041 (2002).CrossRefGoogle Scholar
  34. 34.
    C. R. Settergren, M. B. Wood, Comparison of blood flow in free vascularized versus nonvascularized nerve grafts, J Reconstr Microsurg 1, 95 (1984).PubMedCrossRefGoogle Scholar
  35. 35.
    R. Lind, M. B. Wood, Comparison of the pattern of early revascularization of conventional versus vascularized nerve grafts in the canine, J Reconstr Microsurg 2, 229 (1986).PubMedCrossRefGoogle Scholar
  36. 36.
    N. Imanishi, H. Nakajima, S. Fukuzumi, S. Aiso, Venous drainage of the distally based lesser saphenous-sural veno-neuroadipofascial pedicled fasciocutaneous flap: a radiographic perfusion study, Plast Reconstr Surg 103, 494 (1999).PubMedCrossRefGoogle Scholar
  37. 37.
    A. C. Masquelet, M. C. Romana, G. Wolf, Skin island flaps supplied by the vascular axis of the sensitive superficial nerves: anatomic study and clinical experience in the leg, Plast Reconstr Surg 89, 1115 (1992).PubMedCrossRefGoogle Scholar
  38. 38.
    B. Strauch, M. Ferder, S. Lovelle-Allen, K. Moore, D. J. Kim, J. Llena, Determining the maximal length of a vein conduit used as an interposition graft for nerve regeneration, J Reconstr Surg 12, 521 (1996).Google Scholar
  39. 39.
    M. Merle, A. L. Dellon, J. N. Cambell, P. S. Chang, Complications from silicon-polymer intubulation of nerves, Microsurgery 10, 130 (1989).PubMedCrossRefGoogle Scholar
  40. 40.
    G. R. Evans, K. Brandt, S. Katz, et al., Bioactive poly(l-lactic acid) conduits seeded with Schwann cells for peripheral nerve regeneration, Biomaterials 23, 841 (2002).PubMedCrossRefGoogle Scholar
  41. 41.
    N. Sinis, H. Schaller, C. Schulte-Eversum, et al., Nerve regeneration across a 2-cm gap in the rat median nerve using a resorbable nerve conduit filled with Schwann cells, J Neurosurg 103, 1067 (2005).PubMedCrossRefGoogle Scholar
  42. 42.
    L. A. Pfister, T. Christen, H. P. Merkle, M. Papaloizos, B. Gander B, Novel biodegradable nerve conduits for peripheral nerve regeneration, Eur Cell Mater 7, 16 (2004).Google Scholar
  43. 43.
    T. Hashimoto, Y. Suzuki, K. Suzuki, T. Nakashima, M. Tanihara, C. Ide, Review: peripheral nerve regeneration using non-tubular alginate gel crosslinked with covalent bonds, J Mater Sci Mater Med 16, 503 (2005).PubMedCrossRefGoogle Scholar
  44. 44.
    J. S. Belkas, S. C. Munro, M. S. Shoichet, R. Midha, Peripheral nerve regeneration through a synthetic hydrogel nerve tube, Restor Neurol Neurosci 23, 19 (2005).PubMedGoogle Scholar
  45. 45.
    S. Y. Fu, T. Gordon, Contributing factors to poor functional recovery after delayed nerve repair: prolonged axotomy, J Neurosci 15, 3876 (1995).PubMedGoogle Scholar
  46. 46.
    S. Y. Fu, T. Gordon, Contributing factors to poor functional recovery after delayed nerve repair: prolonged denervation, J Neurosci 15, 3886 (1995).PubMedGoogle Scholar
  47. 47.
    A. K. Gulati, Evaluation of acellular and cellular nerve grafts in repair of rat peripheral nerve, J Neurosurg 68, 117 (1988).PubMedCrossRefGoogle Scholar
  48. 48.
    W. Nadim, P. N. Anderson, M. Turmaine, The role of Schwann cells and basal lamina tubes in the regeneration of axons through long lengths of freeze-killed nerve grafts, Neuropathol Appl Neurobiol 16, 411 (1990).PubMedCrossRefGoogle Scholar
  49. 49.
    P. J. Evans, R. Midha, S. E. Mackinnon, The peripheral nerve allograft: a comprehensive review of regeneration and neuroimmunology, Prog Neurobiol 43, 187 (1994).PubMedCrossRefGoogle Scholar
  50. 50.
    T. K. Das Gupta, Mechanism of rejection of peripheral nerve allografts, Surg Gynecol Obstet 125, 1058 (1967).PubMedGoogle Scholar
  51. 51.
    J. D. Pollard, J. G. McLeod, Fresh and predegenerate nerve allografts and isografts in Tremble mice, Muscle Nerve 4, 274–281 (1981).PubMedCrossRefGoogle Scholar
  52. 52.
    A. K. Gulati, G. P. Cole, Nerve graft immunogenecity as a factor determining axonal regeneration in the rat, J Neurosurg 72, 114 (1990).PubMedCrossRefGoogle Scholar
  53. 53.
    C. Ide, T. Osawa, K. Tohkyama, Nerve regeneration through allogeneic nerve grafts, with special reference to Schwann cell basal lamina, Prog Neurobiol 34, 1 (1990).PubMedCrossRefGoogle Scholar
  54. 54.
    P. J. Evans, S. E. Mackinnon, A. Levi, et al., Cold preserved nerve allografts: changes in basement membrane, viability, immunogenicity, and regeneration, Muscle Nerve 21, 1507 (1998).PubMedCrossRefGoogle Scholar
  55. 55.
    H. Wekerle, M. Schwab, C. Linington, R. Meyermann, Antigen presentation in the peripheral nervous system: Schwann cells present endogenous myelin autoantigens to lymphocytes, Eur J Immunol 16, 1551 (1986).PubMedCrossRefGoogle Scholar
  56. 56.
    F. Lassner, E. Schaller, G. Steinhoff, K. Wonigeit, G. F. Walter, A. Berger, Cellular mechanisms of rejection and regeneration in peripheral nerve allografts, Transplantation 48, 386 (1989).PubMedCrossRefGoogle Scholar
  57. 57.
    A. D. Ansselin, J. D. Pollard, Immunopathological factors in peripheral nerve allograft rejection: quantification of lymphocyte invasion and major histocompatibility complex expression, J Neurol Sci 96, 75 (1990).PubMedCrossRefGoogle Scholar
  58. 58.
    S. E. Mackinnon, A. R. Hudson, R. E. Falk, D. Kline, D. Hunter, Peripheral nerve allograft: an immunological assessment of pretreatment methods, Neurosurgery 14, 167 (1984).PubMedCrossRefGoogle Scholar
  59. 59.
    L. Yu, W. F. Hickey, W. K. Silvers, D. Larossa, A. M. Rostami, Expression of class II antigens on peripheral nerve allografts, Ann N Y Acad Sci 540, 472 (1988).PubMedCrossRefGoogle Scholar
  60. 60.
    L. Marmor, Regeneration of peripheral nerves defects by irradiated homografts, Lancet 1, 1190 (1963).Google Scholar
  61. 61.
    L. Marmor, The repair of peripheral nerves by irradiated homografts, Clin Orthop 34, 161 (1964).PubMedGoogle Scholar
  62. 62.
    L. Marmor, Nerve grafting in peripheral nerve repair, Surg Clin North Am 52, 1177 (1972).PubMedGoogle Scholar
  63. 63.
    B. L. Buch, Experimental study of radiated vs. fresh nerve homografts, Plast Reconstr Surg 45, 586 (1970).PubMedCrossRefGoogle Scholar
  64. 64.
    R. Singh, S. A. Lange, Experience with homologous lyophilized nerve grafts in the treatment of peripheral nerve injuries, Acta Neurochir 32, 125–130 (1975).CrossRefGoogle Scholar
  65. 63.
    T. Osawa, C. Ide, K. Tohyama,. Nerve regeneration through allogenic nerve grafts in mice, Arch Histol Jpn 49, 69 (1986).PubMedCrossRefGoogle Scholar
  66. 66.
    T. Osawa, C. Ide, K. Tohyama, Nerve regeneration through cryo-treated xenogeneic nerve grafts, Arch Histol Jpn 50, 193 (1987).PubMedCrossRefGoogle Scholar
  67. 67.
    C. Ide, K. Tohyama, K. Tajima, et al., Long acellular nerve transplants for allogeneic grafting and the effects of basic fibroblast growth factor on the growth of regenerating axons in dogs: a preliminary report, Exp Neurol 154, 99 (1998).PubMedCrossRefGoogle Scholar
  68. 68.
    K. Tajima, K. Tohyama, C. Ide, M. Abe, Regeneration through nerve allografts in the cynomolgus monkey (Macaca fascicularis), J Bone Joint Surg (Am) 73, 172 (1991).Google Scholar
  69. 69.
    A. A. Zalewski, A. K. Gulati, Evaluation of histocompatibility as a factor in the repair of nerve with a frozen nerve allograft, J Neurosurg 56, 550 (1982).PubMedCrossRefGoogle Scholar
  70. 70.
    S. Mackinnon, A. Hudson, R. Falk, J. Bilbao, D. Kline, D. Hunter, Nerve allograft response: a quantitative immunological study, Neurosurgery 10, 61 (1982).PubMedCrossRefGoogle Scholar
  71. 71.
    S. E. Mackinnon, A. R. Hudson, R. E. Falk, D. Kline, D. Hunter, Peripheral nerve allograft: an assessment of regeneration across pretreated nerve allografts, Neurosurgery 15, 690 (1984).PubMedCrossRefGoogle Scholar
  72. 72.
    I. M. Tarlov, J. A. Epstein, Nerve grafts. The importance of an adequate blood supply, J Neurosurg 2, 49 (1945).CrossRefGoogle Scholar
  73. 73.
    F. K. Sanders, J. Z. Young, The degeneration and re-innervation of grafted nerves, J Anat 76, 143 (1942).PubMedGoogle Scholar
  74. 74.
    G. M. Hare, P. J. Evans, S. E. Mackinnon, et al., Effect of cold preservation on lymphocyte migration into peripheral nerve allografts in sheep, Transplantation 56, 154–62 (1993).PubMedCrossRefGoogle Scholar
  75. 75.
    A. Atchabahian, S. E. Mackinnon, D. A. Hunter, Cold preservation of nerve grafts decreases expression of ICAM-1 and class II MHC antigens, J Reconstr Microsurg 15, 307 (1999).PubMedCrossRefGoogle Scholar
  76. 76.
    I. K. Fox, A. Jaramillo, D. A. Hunter, S. R. Rickman, T. Mohanankumar, S. E. Mackinnon, Prolonged cold-preservation of nerve allografts, Muscle Nerve 31, 59 (2005).PubMedCrossRefGoogle Scholar
  77. 77.
    A. K. Gulati, Immunological fate of Schwann cell-populated acellular basal lamina nerve allografts, Transplantation 59, 1618 (1995).PubMedCrossRefGoogle Scholar
  78. 78.
    G. Keilhoff, F. Pratsch, G. Wolf, H. Fansa, Bridging extra large defects of peripheral nerves: possibilities and limitations of alternative biological grafts from acellular muscle and Schwann cells, Tissue Eng 11, 1004 (2005).PubMedCrossRefGoogle Scholar
  79. 79.
    F. J. Rodriguez, E. Verdu, D. Ceballos, X. Navarro, Nerve guides seeded with autologous Schwann cells improve nerve regeneration, Exp Neurol 161, 571 (2000).PubMedCrossRefGoogle Scholar
  80. 80.
    H. Fansa, T. Dodic, G. Wolf, W. Schneider, G. Keilhoff, Tissue engineering of peripheral nerves: epineurial grafts with application of cultured Schwann cells, Microsurgery 23, 72 (2003).PubMedCrossRefGoogle Scholar
  81. 81.
    H. Fansa, G. Keilhoff, Comparison of different biogenic matrices seeded with cultured Schwann cells for bridging peripheral nerve defects, Neurol Res 26, 167 (2004).PubMedCrossRefGoogle Scholar
  82. 82.
    H. Fansa, W. Schneider, G. Keilhoff, Revascularization of tissue-engineered nerve grafts and invasion of macrophages, Tissue Eng 7, 519 (2001).PubMedCrossRefGoogle Scholar
  83. 83.
    A. A. Zalewski, A. K. Gulati, Survival of nerve allografts in sensitized rats treated with cyclosporine A, J Neurosurg 60, 828 (1984).PubMedCrossRefGoogle Scholar
  84. 84.
    J. R. Bain, S. E. Mackinnon, A. R. Hudson, R. E. Falk, J. A. Falk, D. A. Hunter, The peripheral nerve allograft: a dose-response curve in the rat immunosuppressed with cyclosporine A, Plast Reconstr Surg 32, 447 (1998).Google Scholar
  85. 85.
    R. Midha, S. E. Mackinnon, L. E. Becker, The fate of Schwann cells in peripheral nerve allografts, J Neuropathol Exp Neurol 53, 316 (1994).PubMedCrossRefGoogle Scholar
  86. 86.
    A. Atchabahian, V. B. Doolabh, S. E. Mackinnon, S. Yu, D. A. Hunter, M. A. Flye, Indefinite survival of peripheral nerve allografts after temporary cyclosporine A immunosuppression, Restor Neurol Neurosci 13, 129 (1998).PubMedGoogle Scholar
  87. 87.
    D. L. Chen, S. E. Mackinnon, J. N. Jensen, D. A. Hunter, A. G. Grand, Failure of cyclosporine A to rescue peripheral nerve allografts in acute rejection, Ann Plast Surg 49, 660 (2002).PubMedCrossRefGoogle Scholar
  88. 88.
    D. J. Fox, V. Doolabh, S. E. Mackinnon, E. M. Genden, D. A. Hunter, Decreased cyclosporin A requirement with anti-ICAM-1 and anti-LFA-1α in a peripheral nerve allotransplantation model, Restor Neurol Neurosci 15, 319 (1999).PubMedGoogle Scholar
  89. 89.
    C. P. Larsen, E. T. Elwood, D. Z. Alexander, et al., Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways, Nature 381, 434 (1996).PubMedCrossRefGoogle Scholar
  90. 90.
    A. Chandraker, M. E. Russell, T. Glysing-Jensen, T. A. Willet, M. H. Sayegh, T-cell costimulatory blockade in experimental chronic cardiac allograft rejection, Transplantation 63, 1053–1058 (1997).PubMedCrossRefGoogle Scholar
  91. 91.
    M. S. Wang, M. Zeleney-Pooley, B. G. Gold, Comparative dose-dependent study of FK506 and cyclosporine A on the rate of axonal regeneration in the rat sciatic nerve, J Pharmacol Exp Ther 282, 1084 (1997).PubMedGoogle Scholar
  92. 92.
    T. M. Dawson, J. P. Steiner, V. L. Dawson, J. L. Dinerman, G. R. Uhl, S. H. Snyder, Immunosuppressant FK506 enhances phosphorylation of nitric oxide synthase and protects against glutamate neurotoxicity, Proc Natl Acad Sci U S A 90, 9808 (1993).PubMedCrossRefGoogle Scholar
  93. 93.
    C. Yardin, F. Terro, M. Lesort, F. Esclaire, J. Hugon, FK506 antagonized apoptosis and c-jun protein expression in neuronal cultures, Neuroreport 9, 2077 (1998).PubMedCrossRefGoogle Scholar
  94. 94.
    B. Gold, J. Voda, X. Yu, H. Gordon, The immunosuppressant FK506 elicits a neuronal heat shock response and protects against acrylamide neuropathy, Exp Neurol 187, 160 (2004).PubMedCrossRefGoogle Scholar
  95. 95.
    M. Oltean, R. Olofsson, C. Zhu, S. Mera, K. Blomgren, M. Olausson, FK506 donor pretreatment improves intestinal graft microcirculation and morphology by concurrent inhibition of early NF-κB activation and augmented HSP72 synthesis, Transplant Proc 37, 1931 (2005).PubMedCrossRefGoogle Scholar
  96. 96.
    V. B. Doolabh, S. E. Mackinnon, FK506 accelerates functional recovery following nerve grafting in a rat model, Plast Reconstr Surg 103, 1928 (1999).PubMedCrossRefGoogle Scholar
  97. 97.
    H. Fansa, G. Keilhoff, S. Altmann, K. Plogmeier, G. Wolf, W. Schneider, The effect of the immunosuppressant FK506 on peripheral nerve regeneration following nerve grafting, J Hand Surg (Br) 24, 38 (1999).Google Scholar
  98. 98.
    A. G. Grand, T. M. Myckatyn, S. E. Mackinnon, The synergistic effects of cold preservation and FK506 on peripheral nerve allografts. In Proceedings of the Midwestern Association of Plastics Surgeons, Chicago, IL, April 7–9, 2000.Google Scholar
  99. 99.
    L. Backman, M. Nicar, M. Levy, et al., FK506 trough levels in whole blood and plasma in liver transplant recipients. Correlation with clinical events and side effects, Transplantation 57, 519 (1994).PubMedCrossRefGoogle Scholar
  100. 100.
    S. L. Small, M. B. Fukui, G. T. Bramblett, B. H. Eidelman, Immunosuppression-induced leukoencephalopathy from tacrolimus (FK506), Ann Neurol 40, 575 (1996).PubMedCrossRefGoogle Scholar
  101. 101.
    A. Yamauchi, R. Oishi, Y. Kataoka, Tacrolimus-induced neurotoxicity and nephrotoxicity is ameliorated by administration in the dark phase in rats, Cell Mol Neurobiol 24, 695 (2004).PubMedCrossRefGoogle Scholar
  102. 102.
    J. B. Sobol, I. J. Lowe, R. K. Yang, S. K. Sen, D. A. Hunter, S. E. Mackinnon, Effects of delaying FK506 administration on neuroregeneration in a rodent model, J Reconstr Microsurg 19, 113 (2003).PubMedCrossRefGoogle Scholar
  103. 103.
    A. K. Snyder, I. K. Fox, C. M. Nichols, S. R. Rickman, D. A. Hunter, S. E. Mackinnon, Neuroregenerative effects of pre-injury FK-506 administration, Plast Reconstr Surg, 118, 360 (2006).PubMedCrossRefGoogle Scholar
  104. 104.
    M. J. Brenner, T. T. Tung, S. E. Mackinnon, T. M. Myckatyn, D. A. Hunter, T. Mohanakumar, Anti-CD40 ligand monoclonal antibody induces a permissive state, but not tolerance for murine peripheral nerve allografts, Exp Neurol 186, 59 (2004).PubMedCrossRefGoogle Scholar
  105. 105.
    M. J. Brenner, J. N. Jensen, J. B. Lowe III, et al., Anti-CD40 ligand antibody permits regeneration through peripheral nerve allografts in a nonhuman primate model, Plast Reconstr Surg 114, 1802 (2004).PubMedCrossRefGoogle Scholar
  106. 106.
    S. K. Sen, J. B. Lowe II, M. J. Brenner, D. A. Hunter, S. E. Mackinnon, Assessment of the immune response to dose of nerve allografts, Plast Reconstr Surg 115, 823 (2005).PubMedCrossRefGoogle Scholar
  107. 107.
    M. J. Brenner, S. E. Mackinnon, S. R. Rickman, et al., FK506 and anti-CD40 ligand in peripheral nerve allotransplantation, Restor Neurol Neurosci 23, 237 (2005).PubMedGoogle Scholar
  108. 108.
    S. D. Moffat, S. M. Metcalfe, Comparison between tacrolimus and cyclosporine as immunosuppressive agents compatible with tolerance induction by CD4/CD8 blockade, Transplantation 69, 1724 (2000).CrossRefGoogle Scholar
  109. 109.
    Y. Li, X. X. Zheng, X. C. Li, M. S. Zand, T. B. Strom, Combined costimulation blockade plus rapamycin but not cyclosporine produces permanent engraftment, Transplantation 60, 1387 (1998).CrossRefGoogle Scholar
  110. 110.
    T. M. Myckatyn, R. A. Ellis, A. G. Grand, S. K. Sen, J. B. Lowe III, D. A. Hunter, S. E. Mackinnon, The effects of rapamycin in murine peripheral nerve isografts and allografts, Plast Reconstr Surg 109, 2405 (2002).PubMedCrossRefGoogle Scholar
  111. 111.
    H. Lau, K. Reemtsma, M. A. Hardy, Pancreatic islet allograft prolongation by donor-specific blood transfusions treated with ultraviolet irradiation, Science 221, 754 (1983).PubMedCrossRefGoogle Scholar
  112. 112.
    S. F. Oluwole, N. C. Chowdhurg, R. A. Fawwaz, Induction of donor-specific unresponsiveness to rat cardiac allografts by intrathymic injection of UV-B-irradiated donor spleen cells, Transplantation 55, 1389 (1993).PubMedCrossRefGoogle Scholar
  113. 113.
    S. Yu, Y. Nakafusa, M. W. Flye, Portal vein administration of donor cells promotes peripheral allospecific hyporesponsiveness and graft tolerance, Surgery 116, 229 (1994).PubMedGoogle Scholar
  114. 114.
    T. Kamei, M. P. Callery, M. W. Flye, Pretranspalnt portal venous administration of donor antigen and PV allograft drainage synergistically prolong rat cardiac allograft survival, Surgery 108, 415 (1990).PubMedGoogle Scholar
  115. 115.
    V. B. Doolabh, T. H. Tung, M. W. Flye, S. E. Mackinnon, Effect of nondepleting anti-CD4 monoclonal antibody (Rib 5/2) plus donor antigen pretreatment in peripheral nerve allotransplantation, Microsurgery 22, 329 (2002).PubMedCrossRefGoogle Scholar
  116. 116.
    E. M. Genden, S. E. Mackinnon, S. Yu, M. W. Flye, Induction of donor-specific tolerance to rat nerve allografts with portal venous donor alloantigen and anti-ICAM-1/LFA-1 monoclonal antibodies, Surgery 124, 448 (1998).PubMedGoogle Scholar
  117. 117.
    T. H. Tung, V. B. Doolabh, S. E. Mackinnon, D. Hunter, M. W. Flye, Immune unresponsiveness by intraportal UV-B-irradiated donor antigen administration requires persistence of donor antigen in a nerve allograft model, J Reconstr Microsurg 20, 43 (2004).PubMedCrossRefGoogle Scholar
  118. 118.
    S. E. Mackinnon, V. B. Doolabh, C. B. Novak, E. P. Trulock, Clinical outcome following nerve allograft transplantation, Plast Reconstr Surg 107, 1419–1428 (2001).PubMedCrossRefGoogle Scholar
  119. 119.
    M. Pespeni, M. Hodnett, J. F. Pittet, In vivo stress preconditioning, Methods 35, 158 (2005).PubMedCrossRefGoogle Scholar
  120. 120.
    N. Maeda, N. Ishiguro, G. Inoue, T. Miura, K. Sugimura, Nerve regeneration in rat composite-tissue allografts, J Reconstr Microsurg 7, 297 (1991).PubMedCrossRefGoogle Scholar
  121. 121.
    Y. X. Song, K. Muramatsu, Y. Kurokawa, et al., Functional recovery of rat hind-limb allografts, J Reconstr Microsurg 21, 471 (2005).PubMedCrossRefGoogle Scholar
  122. 122.
    T. Ajiki, M. Takahashi, S. Inoue, et al., Generation of donor hematolymphoid cells after rat-limb composite grafting, Transplantation 75, 631 (2003).PubMedCrossRefGoogle Scholar
  123. 123.
    E. R. Owen, J. M. Dubernard, M. Lanzetta, H. Kapila, X. Martin, M. Dawahra, N. S. Hakim, Peripheral nerve regeneration in human hand transplantation, Transplant Proc 33, 1720 (2001).PubMedCrossRefGoogle Scholar
  124. 124.
    C. Neugroschl, V. Denolin, F. Schuind, et al., Functional MRI activation of somatosensory and motor cortices in a hand-grafted patient with early clinical sensorimotor recovery, Eur Radiol 15, 1806 (2005).PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Chau Y. Tai
    • 1
  • Susan E. Mackinnon
    • 2
  1. 1.Department of SurgeryKern Medical CenterBakersfield
  2. 2.Washington University School of Medicine in St. Louis Chief, Division of Plastic and Reconstructive SurgeryWashington University Medical CenterSt. Louis

Personalised recommendations