Vascularized Bone Marrow Transplantation: Pathology of Composite Tissue Transplantation-Induced Graft-Versus-Host-Disease

  • Rajen Ramsamooj
  • Charles W. Hewitt

Composite tissue allografts (CTAs) represent the transplantation of several tissue types including integumentary, musculoskeletal, cutaneous, and hematopoietic elements. The rat hindlimb CTA using a parental limb to an F1 hybrid host actually represents a vascularized bone marrow transplant model. The hindlimb CTA provides transplantation of precursor hematolymphoid (bone marrow) and mature (blood and lymph nodes) elements by a surgical approach along with transfer of their syngeneic/supportive microenvironments. Immediate engraftment with and without immune modulation has been previously shown.


Acute GVHD Chronic GVHD Donor Chimerism Mixed Chimerism Composite Tissue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. W. Hewitt, R. Ramsamooj, M. Patel, et al. Development of stable mixed T cell chimerism and transplantation tolerance without immune modulation in recipients of vascularized bone marrow allografts, Transplantation 50, 766–772 (1990).PubMedCrossRefGoogle Scholar
  2. 2.
    K. S. Black, C. W. Hewitt, L. A. Fraser, et al. Composite tissue (limb) allografts in rats: II. Indefinite survival using low dose cyclosporine. Transplantation 39, 365–386 (1985).PubMedCrossRefGoogle Scholar
  3. 3.
    C. W. Hewitt, K.S. Black, L. A. Fraser, et al. Composite tissue (limb) allografts in rats: I. Dose dependent increase in survival with cyclosporine. Transplantation 39, 360–364, (1985).PubMedCrossRefGoogle Scholar
  4. 4.
    C. W. Hewitt, K. S. Black, D. F. Dowdy, et al. Composite tissue (limb) allografts in rats: III. Development of donor-host lymphoid chimeras in long-term survivors. Transplantation 41, 39–43 (1986).PubMedCrossRefGoogle Scholar
  5. 5.
    C. W. Hewitt, K. S. Black, L. E. Henson, et al. Lymphocyte chimerism in a full allogeneic composite tissue (rat limb) allograft model prolonged with cyclosporine. Transplant Proc 20, 272–278 (1988).PubMedGoogle Scholar
  6. 6.
    L. E. Henson, C. W. Hewitt, K. S. Black. Use of regression analysis and the complement-dependent cytotoxicity typing assay for predicting lymphoid chimerism. J Immunol Methods 114, 139–144 (1988).PubMedCrossRefGoogle Scholar
  7. 7.
    C. W. Hewitt, K. S. Black, R. Ramsamooj, et al. Lymphoid chimerism and graft-versus-host disease (GVHD) in rat-limb composite tissue allograft recipients. FASEB J 3, 5233 (1989).Google Scholar
  8. 8.
    E. D. Thomas, C. D. Buckner, R. A. Cliff, et al. Marrow transplantation for acute non-lymphoblastic leukemia in first remission period. N Engl J Med 301, 597–599 (1979).PubMedGoogle Scholar
  9. 9.
    G. W. Santos. Bone marrow transplantation. Adv Intern Med 24, 157–182 (1979).PubMedGoogle Scholar
  10. 10.
    W. E. Beschorner, P. J. Tutschka, G. W. Santos. Chronic graft-versus-host-disease in the rat radiation chimera. I. Clinical features, hematology, histology, and immunopathology in long-term chimeras. Transplantation 33, 393–399 (1982).PubMedCrossRefGoogle Scholar
  11. 11.
    R. Ramsamooj, R. Lull, M. P. Patel, et al. Mechanisms of alloimmune tolerance associated with mixed chimerism induced by vascularized bone marrow transplants. Cell Transpl 11, 683–693 (2002).Google Scholar
  12. 12.
    A. G. Rolink, T. Radaszkiewicz, F. Melchers. The autoantigen-binding B cell repertoire of normal and of chronically graft versus host disease mice. J Exp Med 165, 1675–1687 (1987).PubMedCrossRefGoogle Scholar
  13. 13.
    S. Luzuy, J. Merino, H. Engers, et al. Autoimmunity after induction of neonatal to alloantigens: Role of B cell chimerism and F1 donor B cell activation. J Immunol 146, 4420–4426 (1986).Google Scholar
  14. 14.
    D. B. Wilson. Idiotypic regulation of T cells in graft-versus-host-disease and autoimmunity. Immunol Rev 107, 159–177 (1989).PubMedCrossRefGoogle Scholar
  15. 15.
    R. Korngold, J. Sprent. Variable capacity of L3T4+ T cells to cause lethal graft-versus-host disease across minor histocompatibility barriers in mice. J Exp Med 165, 1552–1564 (1987).PubMedCrossRefGoogle Scholar
  16. 16.
    B. L. Hamilton. L3T4-positive T cells participate in the induction of graft-versus-host-disease in response to minor histocompatibility antigens. J Immunol 139, 2511–2515 (1987).PubMedGoogle Scholar
  17. 17.
    R. L. Truitt, A. A. Atasoylu. Contribution of CD4+ and CD8+ T cells to graft-versus-host disease and graft-versus leukemia reactivity after transplantation of MHC-compatible bone marrow. Bone Marrow Transplant 8, 51–58 (1991).PubMedGoogle Scholar
  18. 18.
    R. Ramsamooj, R. Llull, K. S. Black, et al. Composite tissue allografts in rats: IV. Pathological manifestations of graft-versus-host-disease (GVHD) in recipients of vascularized bone marrow allografts. Plast Reconstr Surg 104(5), 1365–1371 (1999).PubMedCrossRefGoogle Scholar
  19. 19.
    M. R. Wick, S. B. Moore, D. A. Gastineau, et al. Immunologic, clinical and pathologic aspects of human graft-versus-host disease. Mayo Clin Proc 58, 603–612 (1983).PubMedGoogle Scholar
  20. 20.
    C. W. Hewitt, M. J. Englese, L. D. Tatem, et al. Graft-versus-host-disease in extremity transplantation: Digital image analysis of bone marrow in situ. Ann Plastic Surg 35, 108–112 (1995).CrossRefGoogle Scholar
  21. 21.
    R. Ramsamooj, R. Llull, L. D. Tatem, et al. Graft versus host disease in extremity transplantation: Digital image analysis of bone marrow and TGF-β expression in situ using a novel 3-D microscope. Transplant Proc 28, 2029–2031 (1996).PubMedGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Rajen Ramsamooj
    • 1
  • Charles W. Hewitt
    1. 1.Department of PathologyU.C.-Davis School of MedicineSacramento, California

    Personalised recommendations